A molecular model system of tetraphenyl porphyrins (TPP) adsorbed on metallic substrates is systematically investigated within a joint scanning tunnelling microscopy/molecular modelling approach. The molecular conformation of TPP molecules, their adsorption on a gold surface and the growth of highly ordered TPP islands are modelled with a combination of density functional theory and dynamic force field methods. The results indicate a subtle interplay between different contributions. The molecule-substrate interaction causes a bending of the porphyrin core which also determines the relative orientations of phenyl legs attached to the core. A major consequence of this is a characteristic (and energetically most favourable) arrangement of molecules within self-assembled molecular clusters; the phenyl legs of adjacent molecules are not aligned parallel to each other (often denoted as pi-pi stacking) but perpendicularly in a T-shaped arrangement. The results of the simulations are fully consistent with the scanning tunnelling microscopy observations, in terms of the symmetries of individual molecules, orientation and relative alignment of molecules in the self-assembled clusters.
Reactions of BODIPY monomers with sulfur nucleophiles and electrophiles result in the formation of new BODIPY dimers. Mono- and disulfur bridges are established, and the new dyestuff molecules were studied with respect to their structural, optical, and electrochemical properties. X-ray diffraction analyses reveal individual angulated orientations of the BODIPY subunits in all cases. DFT calculations provide solution conformers of the DYEmers which deviate in a specific manner from the crystallographic results. Clear exciton-like splittings are observed in the absorption spectra, with maxima at up to 628 nm, in combination with the expected weak fluorescence in polar solvents. A strong communication between the BODIPY subunits was detected by cyclic voltammetry, where two separated one-electron oxidation and reduction waves with peak-to-peak potential differences of 120-400 mV are observed. The qualitative applicability of the exciton model by Kasha for the interpretation of the absorption spectral shape with respect to the conformational state, subunit orientation and distance, and conjugation through the different sulfur bridges, is discussed in detail for the new BODIPY derivatives. This work is part of our concept of DYEmers, where the covalent oligomerisation of BODIPY-type dye molecules with close distances is leading to new functional dyes with predictable properties.
Temperature dependence of conformation, chemical state, and metal-directed assembly of tetrapyridyl-porphyrin on Cu (111) Tetraphenyl porphyrins ͑TPP͒ belong to a highly interesting class of molecules with a large variety of electronic, magnetic, and structural properties. So far, local investigations by scanning probe techniques were primarily focused on larger agglomerates of TPP molecules. Here, experimental results of the observation and manipulation of isolated molecules adsorbed on cold metal substrates by means of low temperature scanning tunneling microscopy are presented. Depending on the surface geometry, i.e., Cu͑111͒ vs Cu͑100͒ three distinct deformations of the molecular structure are identified reflecting the interaction of the phenyl periphery with the substrate. In a second step, controlled manipulation in terms of deformation of the porphyrin core, ligand dissociation, and lateral displacement of the phenyl periphery are demonstrated.
A first systematic study upon the preparation and exploration of a series of iron 10-thiacorroles with simple halogenido (F, Cl, Br, I), pseudo-halogenido (N3 , I3 ) and solvent-derived axial ligands (DMSO, pyridine) is reported. The compounds were prepared from the free-base octaethyl-10-thiacorrole by iron insertion and subsequent ligand-exchange reactions. The small N4 cavity of the ring-contracted porphyrinoid results in an intermediate spin (i.s., S=3/2) state as the ground state for the iron(III) ion. In most of the investigated cases, the i.s. state is found unperturbed and independent of temperature, as determined by a combination of X-ray crystallography and magnetometry with (1) H NMR-, EPR-, and Mössbauer spectroscopy. Two exceptions were found. The fluorido iron(III) complex is inhomogenous in the solid and contains a thermal i.s. (S=3/2)→high spin (h.s., S=5/2) crossover fraction. On the other side, the cationic bis(pyridine) complex resides in the expected low spin (l.s., S=1/2) state. Chemically, the iron 10-thiacorroles differ from the iron porphyrins mainly by weaker axial ligand binding and by a cathodic shift of the redox potentials. These features make the 10-thiacorroles interesting ligands for future research on biomimetic catalysts and model systems for unusual heme protein active sites.
A new member of the metalloporphyrinoid class, the one-carbon short corrole, has been developed in the past decade to a very accessible and easily tunable compound with many potential applications in material science and catalysis. Other than for the structurally related iron porphyrins, all attempts to prepare and study the "naked" iron triphenylcorrole molecule (FeTPC) in bulk have failed. Here, we demonstrate stabilization of FeTPC as adsorbates on a surface. Local investigations by means of scanning tunneling microscopy reveal that along with the adsorption of FeTPC in a saddle conformation, surface induced chirality is the result. Using scanning tunneling microscopy as a local manipulation tool, individual molecules can be controllably switched between different orientations and conformations. Even conformations which are unfavorable during the adsorption process are feasible. The presented experiments demonstrate that metalated corroles are a highly interesting class of metalloporphyrinoids for local investigations but, in comparison with the well established class of porphyrins, add an additional degree of experimental freedom via chirality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.