Peripheral T cell lymphomas (PTCLs) are highly aggressive malignancies with poor prognosis. Their molecular pathogenesis is not well understood and small animal models for the disease are lacking. Recently, the chromosomal translocation t(5;9)(q33;q22) generating the interleukin-2 (IL-2)–inducible T cell kinase (ITK)–spleen tyrosine kinase (SYK) fusion tyrosine kinase was identified as a recurrent event in PTCL. We show that ITK-SYK associates constitutively with lipid rafts in T cells and triggers antigen-independent phosphorylation of T cell receptor (TCR)–proximal proteins. These events lead to activation of downstream pathways and acute cellular outcomes that correspond to regular TCR ligation, including up-regulation of CD69 or production of IL-2 in vitro or deletion of thymocytes and activation of peripheral T cells in vivo. Ultimately, conditional expression of patient-derived ITK-SYK in mice induces highly malignant PTCLs with 100% penetrance that resemble the human disease. Our work demonstrates that constitutively enforced antigen receptor signaling can, in principle, act as a powerful oncogenic driver. Moreover, we establish a robust clinically relevant and genetically tractable model of human PTCL.
Carcinoma of the breast is thought to evolve through a sequential progression from normal to proliferative epithelium and eventually into carcinoma. Here lumpectomy specimens from five patients were studied, selected for the presence of ductal hyperplasia without atypia, atypical ductal hyperplasia, ductal carcinoma in situ, and invasive ductal carcinoma. Laser microdissection of tissue allowed precise sampling and direct correlation of phenotypic and genotypic changes. Analyses of the samples revealed an increasing mean number of chromosomal changes occurring with increasing histologic severity, and for the first time chromosomal abnormalities were demonstrated in ductal hyperplasia without atypia. Chromosomal changes found in each of the four histologic entities included gains on 10q, 12q, 16p, and 20q and loss on 13q. In ductal hyperplasia without atypia, gain on 20q as well as loss on 13q was detected with high frequency (four of five samples). Alterations identified in more than 50% of atypical ductal hyperplasia samples included gains on 3p, 8q, 15q, and 22q and loss on 16q. In ductal carcinoma in situ, gain of DNA on 1q and 17q and loss on 4q were additionally found, and in invasive ductal carcinoma, further gains on 6p, 10q, 11q13, and 17p were identified. The chromosomal alterations occurring in the different histopathologic lesions strongly suggest that these regions harbor tumor suppressor genes or oncogenes significant for the development of ductal carcinoma of the breast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.