The purpose of our study was to demonstrate the use of Natural Language Processing (Leximer), along with Online Analytic Processing, (NLP-OLAP), for extraction of finding trends in a large radiology practice. Prior studies have validated the Natural Language Processing (NLP) program, Leximer for classifying unstructured radiology reports based on the presence of positive radiology findings (F (POS)) and negative radiology findings (F (NEG)). The F (POS) included new relevant radiology findings and any change in status from prior imaging. Electronic radiology reports from 1995-2002 and data from analysis of these reports with NLP-Leximer were saved in a data warehouse and exported to a multidimensional structure called the Radcube. Various relational queries on the data in the Radcube were performed using OLAP technique. Thus, NLP-OLAP was applied to determine trends of F (POS) in different radiology exams for different patient and examination attributes. Pivot tables were exported from NLP-OLAP interface to Microsoft Excel for statistical analysis. Radcube allowed rapid and comprehensive analysis of F (POS) and F (NEG) trends in a large radiology report database. Trends of F (POS) were extracted for different patient attributes such as age groups, gender, clinical indications, diseases with ICD codes, patient types (inpatient, ambulatory), imaging characteristics such as imaging modalities, referring physicians, radiology subspecialties, and body regions. Data analysis showed substantial differences between F (POS) rates for different imaging modalities ranging from 23.1% (mammography, 49,163/212,906) to 85.8% (nuclear medicine, 93,852/109,374; p < 0.0001). In conclusion, NLP-OLAP can help in analysis of yield of different radiology exams from a large radiology report database.
Purpose To quantify the effect of a comprehensive, long-term, provider-led utilization management (UM) program on high-cost imaging (computed tomography, magnetic resonance imaging, nuclear imaging, and positron emission tomography) performed on an outpatient basis. Materials and Methods This retrospective, 7-year cohort study included all patients regularly seen by primary care physicians (PCPs) at an urban academic medical center. The main outcome was the number of outpatient high-cost imaging examinations per patient per year ordered by the patient's PCP or by any specialist. The authors determined the probability of a patient undergoing any high-cost imaging procedure during a study year and the number of examinations per patient per year (intensity) in patients who underwent high-cost imaging. Risk-adjusted hierarchical models were used to directly quantify the physician component of variation in probability and intensity of high-cost imaging use, and clinicians were provided with regular comparative feedback on the basis of the results. Observed trends in high-cost imaging use and provider variation were compared with the same measures for outpatient laboratory studies because laboratory use was not subject to UM during this period. Finally, per-member per-year high-cost imaging use data were compared with statewide high-cost imaging use data from a major private payer on the basis of the same claim set. Results The patient cohort steadily increased in size from 88 959 in 2007 to 109 823 in 2013. Overall high-cost imaging utilization went from 0.43 examinations per year in 2007 to 0.34 examinations per year in 2013, a decrease of 21.33% (P < .0001). At the same time, similarly adjusted routine laboratory study utilization decreased by less than half that rate (9.4%, P < .0001). On the basis of unadjusted data, outpatient high-cost imaging utilization in this cohort decreased 28%, compared with a 20% decrease in statewide utilization (P = .0023). Conclusion Analysis of high-cost imaging utilization in a stable cohort of patients cared for by PCPs during a 7-year period showed that comprehensive UM can produce a significant and sustained reduction in risk-adjusted per-patient year outpatient high-cost imaging volume. RSNA, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.