Strontium cobaltite (SrCoO2.5+δ
, SCO) is a fascinating material because of its topotactic structural phase transition caused by a change in oxygen stoichiometry. In the brownmillerite phase (δ = 0) it is an insulating antiferromagnet whereas in the perovskite phase (δ = 0.5) it is a conducting ferromagnet. In contrast, the impact of the varying Co/Sr stoichiometry on the structure has not yet been studied in SCO thin films. Using molecular beam epitaxy we have fabricated SCO thin films of varying Co/Sr stoichiometry. Films with Co excess exhibit a brownmillerite crystal structure with CoO precipitates within the thin film and on the surface. Co deficient films are amorphous. Only for 1:1 stoichiometry a pure brownmillerite structure is present. We find a clear dependence of the Reflection High Energy Electron Diffraction (RHEED) pattern of these thin films on the stoichiometry. Interestingly, RHEED is very sensitive to a Co excess of less than 12% while x-ray diffraction fails to reveal that difference. Hence, using RHEED, the stoichiometry of SCO can be evaluated and tuned in-situ to a high degree of precision, which allows for a quick adjustment of the growth parameters during a sample series.
Manganites are an interesting class of materials because they exhibit high spin polarization and low damping. We observed both spin pumping and anti-damping in La0.67Sr0.33MnO3/Pt system which makes it promising for future spintronic applications.
Magnetoelectric (ME) coupling in La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (LSMO/PMN–PT (001)) has been probed in the past years to identify the underlying mechanism behind it. PMN–PT, which is well known for its excellent piezoelectric properties, also exhibits ferroelectricity. This motivates our interest to differentiate which effect is dominant for this ‘voltage control of magnetism’. Here, we present results for the ME coupling at different temperatures: 300 K and 80 K. In this article we discuss and explain, how the nature of ME coupling is influenced by different parameters such as magnetic field, electric field, directional dependence (hard axis, easy axis) and temperature. Owing to large lattice mismatch between LSMO and PMN–PT, the strain-mediated coupling is strongly prevalent, however the change in strain behaviour from butterfly loop to linear loop is observed as a function of temperature. ME measurements are performed along hard axis [100] and easy axis [110] of LSMO in the presence of remanent magnetic field which showcases the pure influence of electric field on the system, resulting in a combination of strain- and charge-mediated coupling. The magnetic depth profile is probed by polarized neutron reflectometry as a function of electric field which demonstrates the existence of an interlayer with reduced nuclear scattering length density and reduced magnetic scattering length density at the interface. From transmission electron microscopy, stoichiometric variations are observed due to the presence of Mn3O4 particles at the interface.
We report on the observation of strain-and magneto-electric coupling in a system consisting of a thin film of ferromagnetic La (1−x) Sr x MnO 3 (LSMO, x = 0.5 and 0.3) on a ferroelectric BaTiO 3 (BTO) substrate. Pronounced magnetization steps occur at the BTO structural phase transitions. We associate these steps with a strain induced change of the magnetic anisotropy. Temperature dependent magneto-electric coupling could be evidenced by the magnetic response to an applied AC electric field in all ferroelectric phases of the BTO substrate. In a DC electric field, the magnetization changes are asymmetric with respect to the polarity. Polarized neutron reflectometry hints to oxygen migration as possible mechanism for this asymmetry. It also reveals strain-induced magnetization changes throughout most of the thickness of 252 Å (x = 0.5) and 360 Å (x = 0.3), respectively, of the LSMO layer. We conclude that the change of the magnetization depth profile at the interface as previously proposed by ab initio calculations is not the relevant mechanism. Instead strain, oxygen vacancies and frustration at interfacial steps dominate the magnetic response to an applied electric field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.