This 2022 European Atherosclerosis Society lipoprotein(a) [Lp(a)] consensus statement updates evidence for the role of Lp(a) in atherosclerotic cardiovascular disease (ASCVD) and aortic valve stenosis, provides clinical guidance for testing and treating elevated Lp(a) levels, and considers its inclusion in global risk estimation. Epidemiologic and genetic studies involving hundreds of thousands of individuals strongly support a causal and continuous association between Lp(a) concentration and cardiovascular outcomes in different ethnicities; elevated Lp(a) is a risk factor even at very low levels of low-density lipoprotein cholesterol. High Lp(a) is associated with both microcalcification and macrocalcification of the aortic valve. Current findings do not support Lp(a) as a risk factor for venous thrombotic events and impaired fibrinolysis. Very low Lp(a) levels may associate with increased risk of diabetes mellitus meriting further study. Lp(a) has pro-inflammatory and pro-atherosclerotic properties, which may partly relate to the oxidized phospholipids carried by Lp(a). This panel recommends testing Lp(a) concentration at least once in adults; cascade testing has potential value in familial hypercholesterolaemia, or with family or personal history of (very) high Lp(a) or premature ASCVD. Without specific Lp(a)-lowering therapies, early intensive risk factor management is recommended, targeted according to global cardiovascular risk and Lp(a) level. Lipoprotein apheresis is an option for very high Lp(a) with progressive cardiovascular disease despite optimal management of risk factors. In conclusion, this statement reinforces evidence for Lp(a) as a causal risk factor for cardiovascular outcomes. Trials of specific Lp(a)-lowering treatments are critical to confirm clinical benefit for cardiovascular disease and aortic valve stenosis.
SUMMARY
Macrophage apoptosis in advanced atheromata, a key process in plaque necrosis, involves the combination of ER stress with other pro-apoptotic stimuli. We show here that oxidized phospholipids, oxidized LDL, saturated fatty acids (SFAs), and lipoprotein(a) trigger apoptosis in ER-stressed macrophages through a mechanism requiring both CD36 and toll-like receptor 2 (TLR2). In vivo, macrophage apoptosis was induced in SFA-fed, ER-stressed wild-type but not Cd36−/− or Tlr2−/− mice. For atherosclerosis, we combined TLR2 deficiency with that of TLR4, which can also promote apoptosis in ER-stressed macrophages. Advanced lesions of fat-fed Ldlr−/− mice transplanted with Tlr4−/−Tlr2−/− bone marrow were markedly protected from macrophage apoptosis and plaque necrosis compared with WT → Ldlr−/− lesions. These findings provide insight into how atherogenic lipoproteins trigger macrophage apoptosis in the setting of ER stress and how TLR activation might promote macrophage apoptosis and plaque necrosis in advanced atherosclerosis.
Background
Elevated lipoprotein(a) [Lp(a)] is a prevalent, independent cardiovascular risk factor but the underlying mechanisms responsible for its pathogenicity are poorly defined. Since Lp(a) is the prominent carrier of pro-inflammatory oxidized phospholipids (OxPL), part of its atherothrombosis might be mediated through this pathway.
Methods
In vivo imaging techniques MR imaging, 18F-FDG-PET/CT and SPECT/CT were used to measure subsequently atherosclerotic burden, arterial wall inflammation and monocyte trafficking to the arterial wall. Ex vivo analysis of monocytes was performed using FACS analysis, inflammatory stimulation assays and transendothelial migration assays. In vitro studies to the pathophysiology of Lp(a) on monocytes were performed using an in vitro model for trained immunity.
Results
We show that subjects with elevated Lp(a) (108 [50–195] mg/dL; n=30) have increased arterial inflammation and enhanced PBMCs trafficking to the arterial wall, compared with subjects with normal Lp(a) (7 [2–28] mg/dL; n=30). In addition, monocytes isolated from subjects with elevated Lp(a) remain in a long-lasting primed state, as evidenced by an increased capacity to transmigrate and produce pro-inflammatory cytokines upon stimulation (n=15). In vitro studies show that Lp(a) contains OxPL and augments the pro-inflammatory response in monocytes derived from healthy controls (n=6). This effect was markedly attenuated by inactivating OxPL on Lp(a) or removing OxPL on apo(a).
Conclusions
These findings demonstrate that Lp(a) induces monocyte trafficking to the arterial wall and mediates pro-inflammatory responses through its OxPL content. These findings provide a novel mechanism by which Lp(a) mediates cardiovascular disease.
Clinical Trial Registration
URL: http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=5006 Unique Identifier: NTR5006 (VIPER study)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.