In this study a novel biological activity of sphingosine 1-phosphate (S1P) in C2C12 myoblasts was identified. In these cells the bioactive lipid profoundly regulated myogenesis exerting an antimitogenic activity, by reducing serum-induced cell proliferation, and acting as powerful prodifferentiating agent by enhancing the expression of myogenic differentiation markers such as myogenin, myosin heavy chain, and caveolin-3. The S1P-dependent diminution of serum-induced labeled thymidine incorporation was abrogated by antisense oligodeoxyribonucleotides (ODN) to S1P2, but not to S1P1 or S1P3 receptor, also expressed in C2C12 cells, implicating S1P2 in the biological response. Using antisense ODN and short interfering RNA treatment, we highlighted the key role played by S1P2 in the S1P-dependent induction of muscle-specific gene products. Notably, S1P2 overexpression increased the content of myogenic markers and hastened the onset of differentiated muscle phenotype in comparison with control cells. Cell treatment with pertussis toxin did not affect the biological responses to S1P, ruling out the involvement of Gi-mediated events in the signaling promoted by the sphingolipid. Among the various signaling pathways activated by S1P, the activation of ERK1/ERK2 and p38 MAPK, both identified as downstream effectors of S1P2, was required for the inhibition of cell proliferation and the stimulation of myogenic differentiation, respectively.
Sphingosine kinase (SphK) is a conserved lipid kinase that catalyzes the formation of sphingosine 1-phosphate (S1P), an important lipid mediator, which regulates fundamental biological processes. Here, we provide evidence that SphK is required for the achievement of cell growth arrest as well as myogenic differentiation of C2C12 myoblasts. Indeed, SphK activity, SphK1 protein content and S1P formation were found to be enhanced in myoblasts that became confluent as well as in differentiating cells. Enforced expression of SphK1 reduced the myoblast proliferation rate, enhanced the expression of myogenic differentiation markers and anticipated the onset of differentiated muscle phenotype. Conversely, down-regulation of SphK1 by specific silencing by RNA interference or overexpression of the catalytically inactive SphK1, significantly increased cell growth and delayed the beginning of myogenesis; noticeably, exogenous addition of S1P rescued the biological processes. Importantly, stimulation of myogenesis in SphK1-overexpressing myoblasts was abrogated by treatment with short interfering RNA specific for S1P(2) receptor. This is the first report of the role of endogenous SphK1 in myoblast growth arrest and stimulation of myogenesis through the formation of S1P that acts as morphogenic factor via the engagement of S1P(2).
The present study showed that sphingosine 1-phosphate (SPP) induced rapid stimulation of phospholipase D (PLD) in skeletal muscle C2C12 cells. The effect was receptormediated since it was fully inhibited by pertussis toxin. All known SPP-specific receptors, Edg-1, Edg-3 and AGR16/H218, resulted to be expressed in C2C12 myoblasts, although at a different extent. SPP-induced PLD activation did not involve membrane translocation of PLD1 or PLD2 and appeared to be fully dependent on protein kinase C (PKC) catalytic activity. SPP increased membrane association of PKCK K, PKCN N and PKCV V, however, only PKCK K and PKCN N played a role in PLD activation since low concentrations of GF109203X and rottlerin, a selective inhibitor of PKCN N, prevented PLD stimulation.z 1999 Federation of European Biochemical Societies.
In this study, we report that low doses of tumor necrosis factor-a (TNFa) promote myogenesis in C2C12 myoblasts. Moreover, the cytokine increased sphingosine kinase (SphK) activity and induced SphK1 translocation to membranes. The inhibition of SphK functionality by various approaches abrogated the pro-myogenic effect of TNFa. Moreover, silencing of S1P 2 impaired the positive action of TNFa on myogenesis. These results represent the first evidence that SphK/S1P 2 axis is required for the regulation of myogenesis by TNFa. In view of the physiological role of TNFa in muscle regeneration, the present finding reinforces the notion that SphK/S1P 2 signaling is critically implicated in myogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.