Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution 1,2 . Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes 3,4 . The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer.To gain insights into the molecular alterations that cause CLL, we performed whole-genome sequencing of four cases representative of different forms of the disease: two cases, CLL1 and CLL2, with no mutations in the immunoglobulin genes (IGHV-unmutated) and two cases, CLL3 and CLL4, with mutations in these genes (IGHV-mutated) (Supplementary Table 1 and Supplementary Information). We used a combination of whole-genome sequencing and exome sequencing, as well as long-insert paired-end libraries, to detect variants in chromosomal structure (Supplementary Fig. 1 and Supplementary Tables 2-5). We obtained more than 99.7% concordance between whole-genome sequencing calls and genotyping data, indicating that the coverage and parameters used were sufficient to detect most of the sequence variants in these samples (Supplementary Information). We detected about 1,000 somatic mutations per tumour in non-repetitive regions (Fig. 1a, Supplementary Fig. 2 and Supplementary Table 6). These numbers of somatic mutations were lower than the numbers in melanoma and lung carcinoma 5,6 , but in agreement with previous estimates of less than one mutation per megabase (Mb) for leukaemias 7 . The most common substitution was the transition G>A/C>T, usually occurring in a CpG context (Fig. 1b and Supplementary Fig. 2). We also detected marked differences in the mutation pattern between CLL samples and these differences were associated with tumour subtype (Fig. 1b). Thus, IGHV-mutated cases showed a higher proportion of A>C/T>G mutations tha...
The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
Most great ape genetic variation remains uncharacterized; however,\ud its study is critical for understanding population history, recombination,\ud selection and susceptibility to disease.Herewe sequence\ud to high coverage a total of 79 wild- and captive-born individuals\ud representing all six great ape species and seven subspecies and report\ud 88.8 million single nucleotide polymorphisms. Our analysis provides\ud support for genetically distinct populations within each species,\ud signals of gene flow, and the split of common chimpanzees\ud into two distinct groups: Nigeria–Cameroon/western and central/\ud eastern populations.We find extensive inbreeding in almost all wild\ud populations, with eastern gorillas being the most extreme. Inferred\ud effective population sizes have varied radically over timein different\ud lineages and this appears to have a profound effect on the genetic\ud diversity at, or close to, genes in almost all species. We discover and\ud assign 1,982 loss-of-function variants throughout the human and\ud great ape lineages, determining that the rate of gene loss has not\ud been different in the human branch compared to other internal\ud branches in the great ape phylogeny. This comprehensive catalogue\ud of great ape genomediversity provides a framework for understanding\ud evolution and a resource for more effective management of wild\ud and captive great ape populations
Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.
Here we perform whole-exome sequencing of samples from 105 individuals with chronic lymphocytic leukemia (CLL), the most frequent leukemia in adults in Western countries. We found 1,246 somatic mutations potentially affecting gene function and identified 78 genes with predicted functional alterations in more than one tumor sample. Among these genes, SF3B1, encoding a subunit of the spliceosomal U2 small nuclear ribonucleoprotein (snRNP), is somatically mutated in 9.7% of affected individuals. Further analysis in 279 individuals with CLL showed that SF3B1 mutations were associated with faster disease progression and poor overall survival. This work provides the first comprehensive catalog of somatic mutations in CLL with relevant clinical correlates and defines a large set of new genes that may drive the development of this common form of leukemia. The results reinforce the idea that targeting several well-known genetic pathways, including mRNA splicing, could be useful in the treatment of CLL and other malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.