The aim of this study was to test the effects of two disparate isonitrogenous, isocaloric pre-exercise feeds on deuterium-oxide (D2O) derived measures of myofibrillar protein synthesis (myoPS) in humans. Methods: In a double-blind parallel group design, 22 resistance-trained men aged 18 to 35 years ingested a meal (6 kcal·kg−1, 0.8 g·kg−1 carbohydrate, 0.2 g·kg−1 fat) with 0.33 g·kg−1 nonessential amino acids blend (NEAA) or whey protein (WHEY), prior to resistance exercise (70% 1RM back-squats, 10 reps per set to failure, 25% duty cycle). Biopsies of M. vastus lateralis were obtained pre-ingestion (PRE) and +3 h post-exercise (POST). The myofibrillar fractional synthetic rate (myoFSR) was calculated via deuterium labelling of myofibrillar-bound alanine, measured by gas chromatography–pyrolysis–isotope ratio mass spectrometry (GC-Pyr-IRMS). Data are a mean percentage change (95% CI). Results: There was no discernable change in myoFSR following NEAA (10(−5, 25) %, p = 0.235), whereas an increase in myoFSR was observed after WHEY (28 (13, 43) %, p = 0.003). Conclusions: Measured by a D2O tracer technique, a disparate myoPS response was observed between NEAA and WHEY. Pre-exercise ingestion of whey protein increased post-exercise myoPS, whereas a NEAA blend did not, supporting the use of NEAA as a viable isonitrogenous negative control.
Background: The aim of this study was to investigate the effect of whey protein supplementation on myofibrillar protein synthesis (myoPS) and muscle recovery over a 7-d period of intensified resistance training (RT). Methods: In a double-blind randomised parallel group design, 16 resistance-trained men aged 18 to 35 years completed a 7-d RT protocol, consisting of three lower-body RT sessions on non-consecutive days. Participants consumed a controlled diet (146 kJ·kg−1·d−1, 1.7 g·kg−1·d−1 protein) with either a whey protein supplement or an isonitrogenous control (0.33 g·kg−1·d−1 protein). To measure myoPS, 400 ml of deuterium oxide (D2O) (70 atom %) was ingested the day prior to starting the study and m. vastus lateralis biopsies were taken before and after RT-intervention. Myofibrillar fractional synthetic rate (myoFSR) was calculated via deuterium labelling of myofibrillar-bound alanine, measured by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Pyr-IRMS). Muscle recovery parameters (i.e., countermovement jump height, isometric-squat force, muscle soreness and serum creatine kinase) were assessed daily. Results: MyoFSR PRE was 1.6 (0.2) %∙d−1 (mean (SD)). Whey protein supplementation had no effect on myoFSR (p = 0.771) or any recovery parameter (p = 0.390–0.989). Conclusions: Over an intense 7-d RT protocol, 0.33 g·kg−1·d−1 of supplemental whey protein does not enhance day-to-day measures of myoPS or postexercise recovery in resistance-trained men.
Given the importance of exercise economy to endurance performance, we implemented two strategies purported to reduce the oxygen cost of exercise within a 4 week training camp in 21 elite male race walkers. Fourteen athletes undertook a crossover investigation with beetroot juice (BRJ) or placebo (PLA) [2 d preload, 2 h pre-exercise + 35 min during exercise] during a 26 km race walking at speeds simulating competitive events. Separately, 19 athletes undertook a parallel group investigation of a multi-pronged strategy (MAX; n = 9) involving chronic (2 w high carbohydrate [CHO] diet + gut training) and acute (CHO loading + 90 g/h CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON; n = 10). There were no differences between BRJ and PLA trials for rates of CHO (p = 0.203) or fat (p = 0.818) oxidation or oxygen consumption (p = 0.090). Compared with CON, MAX was associated with higher rates of CHO oxidation during exercise, with increased exogenous CHO use (CON; peak = ~0.45 g/min; MAX: peak = ~1.45 g/min, p < 0.001). High rates of exogenous CHO use were achieved prior to gut training, without further improvement, suggesting that elite athletes already optimise intestinal CHO absorption via habitual practices. No differences in exercise economy were detected despite small differences in substrate use. Future studies should investigate the impact of these strategies on sub-elite athletes’ economy as well as the performance effects in elite groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.