Staphylococcus aureus is a major cause of nosocomial infections worldwide, and the rate of resistance to clinically relevant antibiotics, such as methicillin, is increasing; furthermore, there has been an increase in the number of methicillin-resistant S. aureus community-acquired infections. Effective treatment and prevention strategies are urgently needed. We investigated the potential of the S. aureus surface protein iron surface determinant B (IsdB) as a prophylactic vaccine against S. aureus infection. IsdB is an iron-sequestering protein that is conserved in diverse S. aureus clinical isolates, both methicillin resistant and methicillin sensitive, and it is expressed on the surface of all isolates tested. The vaccine was highly immunogenic in mice when it was formulated with amorphous aluminum hydroxyphosphate sulfate adjuvant, and the resulting antibody responses were associated with reproducible and significant protection in animal models of infection. The specificity of the protective immune responses in mice was demonstrated by using an S. aureus strain deficient for IsdB and HarA, a protein with a high level of identity to IsdB. We also demonstrated that IsdB is highly immunogenic in rhesus macaques, inducing a more-than-fivefold increase in antibody titers after a single immunization. Based on the data presented here, IsdB has excellent prospects for use as a vaccine against S. aureus disease in humans.Staphylococcus aureus is a gram-positive bacterium that is notable for the frequency and severity of infections that it causes in hospitalized patients. These infections range from localized skin infections to bacteremia and septic shock. In the past 20 years there has been a dramatic increase in the incidence of nosocomial staphylococcal infections; this increase parallels the increased use of intravascular devices and invasive procedures. S. aureus has been identified as one of the three most frequent nosocomial pathogens and is responsible for approximately 25% of the 2 million nosocomial infections reported in the United States each year (38, 39). A second trend has been the increase in the incidence of methicillin-resistant S. aureus, largely due to selective antibiotic pressure. Resistant strains were initially identified in tertiary care hospitals but have been increasingly reported among infections in the community (25, 30). Resistance to methicillin is often accompanied by resistance to other antibiotics; a CDC survey showed that the proportion of methicillin-resistant isolates which were susceptible only to vancomycin rose from 22.8% to 56. 2% from 1987 to 1997 (18). More recently, S. aureus strains with intermediate susceptibility or resistance to vancomycin have been reported (11,24,36). Infections caused by multidrug-resistant S. aureus limit therapeutic options, and they may be associated with higher mortality and higher costs than infections caused by susceptible staphylococci. There is clearly a need for new treatment and prevention strategies.In an immunological survey of S. aureus su...
Optimization increased both the analytical sensitivity and the clinical specificity of the assay to more effectively discriminate the low-titer antibody response of HPV-infected persons from noninfected individuals. The characteristics of the assay that were optimized included monoclonal antibody (MAb) specificity, scaling up the conjugation of virus-like particles (VLPs) to microspheres, VLP concentration, MAb concentration, sample matrix, sample dilution, incubation time, heat inactivation of sample sera, and detergent effects on assay buffer. The assay was automated by use of a TECAN Genesis Workstation, thus improving assay throughput, reproducibility, and operator safety. Following optimization, the assay was validated using several distinct serum panels from individuals determined to be at low and high risk for HPV infection. The validated assay was then used to determine the clinical serostatus cutoff. This high-throughput assay has proven useful for performing epidemiology studies and evaluating the efficacy of prophylactic HPV vaccines.Cervical cancer is the second most common cancer in women worldwide. Every year, 450,000 women are diagnosed with cervical cancer and 220,000 succumb to this disease (27). Current approaches to cervical cancer control involve lifelong screening using the Papanicolau (Pap) test (13). The goal of screening is to detect precancerous lesions so that they can be removed prior to the development of cancer. Despite widespread Pap testing, there were an estimated 10,520 new cases of cervical cancer and nearly 4,000 cervical cancer-related deaths in the United States in 2004 (1). The national health care burden of current screening systems combined with direct costs of treating precancerous and cancerous lesions is in excess of 3.5 billion U.S. dollars per annum (7).Infection with human papillomavirus (HPV) is the first and obligate step in the development of cervical cancer (3, 4). Infection of the cervical epithelium with HPV results in expression of the E6 and E7 proteins, which have been shown to be potent oncogenes. More than 35 different HPV types are capable of infecting the human genital tract (2, 4, 28). Of these, four types cause the majority of the HPV-related cervical pathology. HPV 16 and 18 together account for 74.6% of all cervical cancers (23), whereas HPV6 and -11 cause a significant fraction of precancerous lesions which rarely develop into cervical cancer but morphologically are indistinguishable from lesions from more dangerous HPV types (37). HVP 6 and 11 are responsible for approximately 90% of all genital wart cases (37).The HPV LI capsid protein, when expressed recombinantly, assembles into empty viral capsids or "virus like particles" (VLPs) (12,15,16,29). Several prophylactic vaccines based on HPV LI VLPs are currently in phases II and III clinical development (14,17,36). The VLPs in the vaccine present the immune system with the conformational, neutralizing epitopes found on the natural virus and prime the immune system to generate antibodies that neutra...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.