Governments in low- and middle-income countries are legitimizing the implementation of universal health coverage (UHC), following a United Nation’s resolution on UHC in 2012 and its reinforcement in the sustainable development goals set in 2015. UHC will differ in each country depending on country contexts and needs, as well as demand and supply in health care. Therefore, fundamental issues such as objectives, users and cost–effectiveness of UHC have been raised by policy-makers and stakeholders. While priority-setting is done on a daily basis by health authorities – implicitly or explicitly – it has not been made clear how priority-setting for UHC should be conducted. We provide justification for explicit health priority-setting and guidance to countries on how to set priorities for UHC.
BackgroundAntibiotics have played an essential role in decreasing morbidity and mortality from infectious diseases. However, indiscriminate use and unrestricted access is contributing to the emergence of bacterial resistance. This paper reports on a situational analysis of antimicrobial use and resistance in Ghana, with focus on policy and regulation.MethodsRelevant policy documents, reports, regulations and enactments were reviewed. PubMed and Google search engines were used to extract relevant published papers. Websites of stakeholders such as Ministry of Health (MOH) and its agencies were also reviewed. An interview guide was used to elicit responses from selected officials from these sectors.ResultsLaws and guidelines to control the use of antimicrobials in humans were available but not for animals. There was no National Antimicrobial Policy (NAP). A health practice regulatory law mandates Physicians, Physician Assistants, Midwives and trained Nurses to prescribe antimicrobials. However, antibiotics are widely prescribed and dispensed by unauthorised persons, suggesting weak enforcement of the laws. Antibiotics were also supplied to and from unapproved medicine outlets. The Standard Treatment Guidelines (STG), Essential Medicines List (EML) and the National Health Insurance Scheme Medicines List (NHISML) provide restrictions regarding levels of prescribing of antimicrobials. However, existing guidelines on antibiotic use are mostly not adhered to. The use of Automatic Stop Orders to avoid wastage in the hospitals is also not practiced. Data on use of antibiotics for individuals are not readily available in most facilities. Again, there are no standards or guidelines on veterinary use of antibiotics. Surveillance systems for consumption of antibiotics and resistance monitoring were not in place in most health facilities. However, there is an ongoing national action to create awareness on bacteria resistance, strengthening knowledge through research and surveillance and development of NAP in line with global action plan on antimicrobial resistance.ConclusionAbsence of national antimicrobial policy, weak regulatory environment and non-adherence to practice standards may have contributed to increased and unregulated access to antimicrobials in Ghana, a catalyst for development and spread of antimicrobial resistance.Electronic supplementary materialThe online version of this article (10.1186/s12889-017-4910-7) contains supplementary material, which is available to authorized users.
Global efforts are underway to combat antimicrobial resistance (AMR). A key target in this intervention is surveillance for local and national action. Data on AMR in Ghana are limited, and monitoring of AMR is nonexistent. We sought to generate baseline data on AMR, and to assess the readiness of Ghana in laboratory-based surveillance. Biomedical scientists in laboratories across Ghana with capacity to perform bacteriological culture were selected and trained. In-house standard operating protocols were used to perform microbiological investigations on clinical specimens. Additional microbiological tests and data analyses were performed at a centralized laboratory. Surveillance data were stored and analyzed using WHONET program files. A total of 24 laboratories participated in the training, and 1,598 data sets were included in the final analysis. A majority of the bacterial species were isolated from outpatients (963 isolates; 60.3%). Urine (617 isolates; 38.6%) was the most common clinical specimen cultured, compared to blood (100 isolates; 6.3%). Ten of 18 laboratories performed blood culture. Bacteria isolated included Escherichia coli (27.5%), Pseudomonas spp. (14.0%), Staphylococcus aureus (11.5%), Streptococcus spp. (2.3%), and Salmonella enterica serovar Typhi (0.6%). Most of the isolates were multidrug-resistant, and over 80% of them were extended-spectrum beta-lactamases-producing. Minimum inhibitory concentration levels at 50% and at 90% for ciprofloxacin, ceftriaxone, and amikacin on selected multidrug-resistant bacteria species ranged between 2 µg/mL and >256 µg/mL. A range of clinical bacterial isolates were resistant to important commonly used antimicrobials in the country, necessitating an effective surveillance to continuously monitor AMR in Ghana. With local and international support, Ghana can participate in global AMR surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.