The thickness of dendronized polymers can be tuned by varying their generation g and the dendron functionality X. Systematic studies of this effect require (i) synthetic ability to produce large samples of high quality polymers with systematic variation of g, X and of the backbone polymerization degree N, (ii) a theoretical model relating the solvent swollen polymer diameter, r, and persistence length, lambda, to g and X. This article presents an optimized synthetic method and a simple theoretical model. Our theory approach, based on the Boris-Rubinstein model of dendrimers predicts r approximately n(1/4)g(1/2) and lambda approximately n(2) where n = [(X - 1)(g) - 1]/(X - 2) is the number of monomers in a dendron. The average monomer concentration in the branched side chains of a dendronized polymer increases with g in qualitative contrast to bottle brushes whose side chains are linear. The stepwise, attach-to, synthesis of X = 3 dendronized polymers yielded gram amounts of g = 1-4 polymers with N approximately = 1000 and N approximately = 7000 as compared to earlier maxima of 0.1 g amounts and of N approximately = 1000. The method can be modified to dendrons of different X. The conversion fraction at each attach-to step, as quantified by converting unreacted groups with UV labels, was 99.3% to 99.8%. Atomic force microscopy on mixed polymer samples allows to distinguish between chains of different g and suggests an apparent height difference of 0.85 nm per generation as well as an increase of persistence length with g. We suggest synthetic directions to allow confrontation with theory.
An efficient synthesis of a methacrylate-based, second-generation (G2) dendronized macromonomer and its free radical polymerization to the corresponding high-molar-mass G2 dendronized polymer are described. The molar mass is determined by gel permeation chromatography (GPC), light-scattering, and analytical ultracentrifugation and compared with values estimated from a scanning force microscopy (SFM) contour lengths analysis of individualized polymer strands on mica. The polymer carries terminal tert-butyl-protected carboxyl groups, the degree of deprotection of which with trifluoroacetic acid is quantified by NMR spectroscopy using the highest molar mass sample. SFM imaging of both protected (noncharged) and unprotected (charged) dendronized polymers on solid substrates reveals mostly linear chains but also some with main-chain branches. The nature of these branches is investigated and the degree roughly estimated to which they are formed. Finally, a synthetic model experiment is described which sheds some light on the aspect of whether chain transfer, a process that could lead to covalent branching, is of importance in the synthesis of the present dendronized polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.