The macroscopic nonlinear pyroelectric polarization of wurtzite Al x Ga 1−x N, In x Ga 1−x N and Al x In 1−x N ternary compounds (large spontaneous polarization and piezoelectric coupling) dramatically affects the optical and electrical properties of multilayered Al(In)GaN/GaN hetero-, nanostructures and devices, due to the huge built-in electrostatic fields and bound interface charges caused by gradients in polarization at surfaces and heterointerfaces. Models of
Copper‐oxide compound semiconductors provide a unique possibility to tune the optical and electronic properties from insulating to metallic conduction, from bandgap energies of 2.1 eV to the infrared at 1.40 eV, i.e., right into the middle of the efficiency maximum for solar‐cell applications. Three distinctly different phases, Cu2O, Cu4O3, and CuO, of this binary semiconductor can be prepared by thin‐film deposition techniques, which differ in the oxidation state of copper. Their material properties as far as they are known by experiment or predicted by theory are reviewed. They are supplemented by new experimental results from thin‐film growth and characterization, both will be critically discussed and summarized. With respect to devices the focus is on solar‐cell performances based on Cu2O. It is demonstrated by photoelectron spectroscopy (XPS) that the heterojunction system p‐Cu2O/n‐AlGaN is much more promising for the application as efficient solar cells than that of p‐Cu2O/n‐ZnO heterojunction devices that have been favored up to now.
Aberration corrected scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging and the newly developed annular bright field (ABF) imaging are used to define a new guideline for the polarity determination of semiconductor nanowires (NWs) from binary compounds in two extreme cases: (i) when the dumbbell is formed with atoms of similar mass (GaAs) and (ii) in the case where one of the atoms is extremely light (N or O: ZnO and GaN/AlN). The theoretical fundaments of these procedures allow us to overcome the main challenge in the identification of dumbbell polarity. It resides in the separation and identification of the constituent atoms in the dumbbells. The proposed experimental via opens new routes for the fine characterization of nanostructures, e.g., in electronic and optoelectronic fields, where the polarity is crucial for the understanding of their physical properties (optical and electronic) as well as their growth mechanisms.
The pH-sensitivity of GaN surfaces in electrolyte solutions has been determined. For this purpose, GaN field-effect transistors and AlGaN/GaN high-electron-mobility transistor (HEMT) structures were used to measure the response of nonmetallized GaN gate regions to changes of the H+-concentration in an ambient electrolyte. We found a linear response to changes in the pH between pH=2 and pH=12 for both as-deposited and thermally oxidized GaN surfaces. Both surfaces showed an almost Nernstian behavior with sensitivities of 57.3 mV/pH for GaN:Si/GaN:Mg and 56.0 mV/pH for GaN/AlGaN/GaN HEMT structures. This suggests that the native metal oxide on the III-nitride surface is responsible for pH-sensitivity. The investigated devices showed stable operation with a resolution better than 0.05 pH over the entire pH range.
The self-assembled growth of GaN nanorods on Si ͑111͒ substrates by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions is investigated. An amorphous silicon nitride layer is formed in the initial stage of growth that prevents the formation of a GaN wetting layer. The nucleation time was found to be strongly influenced by the substrate temperature and was more than 30 min for the applied growth conditions. The observed tapering and reduced length of silicon-doped nanorods is explained by enhanced nucleation on nonpolar facets and proves Ga-adatom diffusion on nanorod sidewalls as one contribution to the axial growth. The presence of Mg leads to an increased radial growth rate with a simultaneous decrease of the nanorod length and reduces the nucleation time for high Mg concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.