Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.
SignificanceThe brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome analysis of human adult cortical samples. We have established an experimental and analytical framework with which the complexity of the human brain can be dissected on the single cell level. Using this approach, we were able to identify all major cell types of the brain and characterize subtypes of neuronal cells. We observed changes in neurons from early developmental to late differentiated stages in the adult. We found a subset of adult neurons which express major histocompatibility complex class I genes and thus are not immune privileged.
Counting individual RNA or DNA molecules is difficult because they are hard to copy quantitatively for detection. To overcome this limitation, we applied unique molecular identifiers (UMIs), which make each molecule in a population distinct, to genome-scale human karyotyping and mRNA sequencing in Drosophila melanogaster. Use of this method can improve accuracy of almost any next-generation sequencing method, including chromatin immunoprecipitation-sequencing, genome assembly, diagnostics and manufacturing-process control and monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.