The derivation of neural progenitor cells from human embryonic stem (ES) cells is of value both in the study of early human neurogenesis and in the creation of an unlimited source of donor cells for neural transplantation therapy. Here we report the generation of enriched and expandable preparations of proliferating neural progenitors from human ES cells. The neural progenitors could differentiate in vitro into the three neural lineages--astrocytes, oligodendrocytes, and mature neurons. When human neural progenitors were transplanted into the ventricles of newborn mouse brains, they incorporated in large numbers into the host brain parenchyma, demonstrated widespread distribution, and differentiated into progeny of the three neural lineages. The transplanted cells migrated along established brain migratory tracks in the host brain and differentiated in a region-specific manner, indicating that they could respond to local cues and participate in the processes of host brain development. Our observations set the stage for future developments that may allow the use of human ES cells for the treatment of neurological disorders.
SUMMARY Rats have important advantages over mice as an experimental system for physiological and pharmacological investigations. The lack of rat embryonic stem (ES) cells has restricted the availability of transgenic technologies to create genetic models in this species. Here, we show that rat ES cells can be efficiently derived, propagated, and genetically manipulated in the presence of small molecules that specifically inhibit GSK3, MEK, and FGF receptor tyrosine kinases. These rat ES cells express pluripotency markers and retain the capacity to differentiate into derivatives of all three germ layers. Most importantly, they can produce high rates of chimerism when reintroduced into early stage embryos and can transmit through the germline. Establishment of authentic rat ES cells will make possible sophisticated genetic manipulation to create models for the study of human diseases.
Background-Cardiomyocytes derived from human embryonic stem (hES) cells could be useful in restoring heart function after myocardial infarction or in heart failure.
The amnion is the inner of two membranes surrounding the fetus. That it arises from embryonic epiblast cells prior to gastrulation suggests that it may retain a reservoir of stem cells throughout pregnancy. We found that human amniotic epithelial cells (hAECs) harvested from term-delivered fetal membranes express mRNA and proteins present in human embryonic stem cells (hESCs), including POU domain, class 5, transcription factor 1; Nanog homeobox; SRY-box 2; and stage-specific embryonic antigen-4. In keeping with possible stem cell-like activity, hAECs were also clonogenic, and primary hAEC cultures could be induced to differentiate into cardiomyocytic, myocytic, osteocytic, adipocytic (mesodermal), pancreatic, hepatic (endodermal), neural, and astrocytic (neuroectodermal) cells in vitro, as defined by phenotypic, mRNA expression, immunocytochemical, and/or ultrastructural characteristics. However, unlike hESCs, hAECs did not form teratomas upon transplantation into severe combined immunodeficiency mice testes. Last, using flow cytometry we have shown that only a very small proportion of primary hAECs contain class IA and class II human leukocyte antigens (HLAs), consistent with a low risk of tissue rejection. However, following differentiation into hepatic and pancreatic lineages, significant proportions of cells contained class IA, but not class II, HLAs. These observations suggest that the term amnion, an abundant and easily accessible tissue, may be a useful source of multipotent stem cells that possess a degree of immune privilege.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.