Despite the success of genomics in identifying new essential bacterial genes, there is a lack of sustainable leads in antibacterial drug discovery to address increasing multidrug resistance. Type IIA topoisomerases cleave and religate DNA to regulate DNA topology and are a major class of antibacterial and anticancer drug targets, yet there is no well developed structural basis for understanding drug action. Here we report the 2.1 A crystal structure of a potent, new class, broad-spectrum antibacterial agent in complex with Staphylococcus aureus DNA gyrase and DNA, showing a new mode of inhibition that circumvents fluoroquinolone resistance in this clinically important drug target. The inhibitor 'bridges' the DNA and a transient non-catalytic pocket on the two-fold axis at the GyrA dimer interface, and is close to the active sites and fluoroquinolone binding sites. In the inhibitor complex the active site seems poised to cleave the DNA, with a single metal ion observed between the TOPRIM (topoisomerase/primase) domain and the scissile phosphate. This work provides new insights into the mechanism of topoisomerase action and a platform for structure-based drug design of a new class of antibacterial agents against a clinically proven, but conformationally flexible, enzyme class.
New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticancer drug etoposide with Staphylococcus aureus DNA gyrase, showing binding at the same sites in the cleaved DNA as the fluoroquinolone moxifloxacin. Unlike moxifloxacin, QPT-1 and etoposide interact with conserved GyrB TOPRIM residues rationalizing why QPT-1 can overcome fluoroquinolone resistance. Our data show etoposide's antibacterial activity is due to DNA gyrase inhibition and suggests other anticancer agents act similarly. Analysis of multiple DNA gyrase co-crystal structures, including asymmetric cleavage complexes, led to a ‘pair of swing-doors' hypothesis in which the movement of one DNA segment regulates cleavage and religation of the second DNA duplex. This mechanism can explain QPT-1's bacterial specificity. Structure-based strategies for developing topo2A antibacterials are suggested.
SB-219383 and its analogues are a class of potent and specific inhibitors of bacterial tyrosyl-tRNA synthetases. Crystal structures of these inhibitors have been solved in complex with the tyrosyl-tRNA synthetase from Staphylococcus aureus, the bacterium that is largely responsible for hospital-acquired infections. The full-length enzyme yielded crystals that diffracted to 2.8 Å resolution, but a truncated version of the enzyme allowed the resolution to be extended to 2.2 Å. These inhibitors not only occupy the known substrate binding sites in unique ways, but also reveal a butyl binding pocket. It was reported that the Bacillus stearothermophilus TyrRS T51P mutant has much increased catalytic activity. The S. aureus enzyme happens to have a proline at position 51. Therefore, our structures may contribute to the understanding of the catalytic mechanism and provide the structural basis for designing novel antimicrobial agents.
Potent nanomolar inhibitors of Staphylococcus aureus methionyl tRNA synthetase have been derived from a file compound high throughput screening hit. Optimized compounds show excellent antibacterial activity against staphylococcal and enterococcal pathogens, including strains resistant to clinical antibiotics. Compound 11 demonstrated in vivo efficacy in an S. aureus rat abscess infection model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.