Binding of cells of Staphylococcus aureus to fibronectin, which may represent a mechanism of host tissue adherence, involves a fibronectin-receptor protein present on the bacterial surface. Cloning of a gene coding for a staphylococcal fibronectin-binding protein and construction of a fusion protein with fibronectin-binding properties was previously reported from our laboratory. We have now sequenced the gene and deduced a primary sequence of the fibronectin-binding protein. The protein resembles other cell-wall-associated proteins on Gram-positive bacteria in that it (i) appears to be anchored in the cell membrane via its C-terminal end, (ii) contains a proline-rich repeating unit outside the membrane anchor, and (iii) contains a long (36-amino acid) signal sequence at the N terminus. The fibronectin-binding activity has been localized to a domain composed of a 38-amino acid unit repeated completely three times and partially a fourth time; the identity between the three 38-amino acid sequences varies from 42 to 87%. Three synthetic peptides mimicking the structure of each 38-amino acid unit were constructed. All three peptides interacted with fibronectin, as indicated by their ability to inhibit binding of fibronectin to staphylococcal cells, whereas an unrelated 37-amino acid peptide showed no inhibitory activity.
A gene encoding a fibronectin binding protein (FnBP) has recently been isolated and sequenced from Staphylococcus uureus strain 8325-4. In the same bacterial strain, 682 bp downstream to the stop codon of this gene VizhA), a second gene termed,fnhB has now been discovered, encoding another FnBP (FnBPB). The two genes show in large parts striking sequence homologies. The complete amino acid sequence encoded by fnbB has been deduced and compared to that deduced fromfizhA. In FnBPB a stretch of 66 amino acids downstream to the signal peptide has 75% identity with the corresponding region in FnBPA. At the C-terminal site another 394 amino acid stretch is almost identical in both gene products. This stretch contains the 38 amino acid long D repeats, the wall spanning Wr repeats and the hydrophobic membrane spanning domain. In FnBPA each of the three D repeats has been identified as a fibronectin binding structure. These structures are highly conserved in
The gene encoding the IgG‐binding protein G from Streptococcus G148 was isolated by molecular cloning. A subclone containing a 1.5‐kb insert gave a functional product in Escherichia coli. Protein analysis of affinity‐purified polypeptides revealed two gene products, both smaller than protein G spontaneously released from streptococci, but with identical IgG‐binding properties. The complete nucleotide sequence of the insert revealed a repeated structure probably evolved through duplications of fragments of different sizes. The deduced amino acid sequence revealed an open reading frame extending throughout the insert, terminating in a TAA stop codon. Analysis of the two gene products by N‐terminal amino acid determination suggests that two different TTG codons are recognized in E. coli for initiation of translation to yield the two products. Based on these results several truncated gene constructions were expressed and analysed. The results suggest that the C‐terminal part of streptococcal protein G consists of three IgG‐binding domains followed by a region which anchors the protein to the cell surface. Structural and functional comparisons with streptococcal M protein and staphylococcal protein A have been made.
The gene encoding the fibronectin‐binding protein (FNBP) from Staphylococcus aureus strain 8325‐4 was isolated from a gene bank in pBR322. The original clone, containing a 6.5‐kb insert, gave a functional product present in the periplasm of Escherichia coli. Analysis of polypeptides isolated after affinity chromatography on fibronectin‐Sepharose followed by ion‐exchange chromatography revealed two gene products, 87 and 165 kd in mol. wt. The amino acid compositions of these two polypeptides and a native FNBP from S. aureus strain Newman were very similar. Antibodies raised against the native FNBP from strain Newman precipitated the 125I‐labelled 165‐kd polypeptide, and unlabeled 165‐ and 87‐kd polypeptides as well as native FNBP inhibited the immunoprecipitation reactions. The region of the fnbp‐gene encoding the fibronectin‐binding activity has been identified and subcloned in an expression vector based on the staphylococcal protein A gene. The resulting product in E. coli is an extracellular fusion protein consisting of two IgG‐binding domains of protein A followed by a fibronectin‐binding region. The fusion protein binds to fibronectin and completely inhibits the binding of fibronectin to intact cells of S. aureus.
Six genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii were identified using Tn5 mutagenesis. Four of them displayed homology to the previously cloned and sequenced Agrobacteriurn turnefaciens cellulose genes celA, celf3, ce/C and celE These genes are organized similarly in R. legurninosarum bv. trifolii. In addition, there were strong indications that two tandemly located genes, celRl and celR2, probably organized as one operon, are involved in the regulation of cellulose synthesis. The deduced amino acid sequences of these genes displayed a high degree of similarity to the Caulobacter crescentus DivK and PleD proteins that belong to the family of two-component response regulators. This is to our knowledge the first report of genes involved in the regulation of cellulose synthesis. Results from attachment assays and electron microscopic studies indicated that cellulose synthesis in R. leguminosarum bv. trifolii is induced upon close contact with plant roots during the attachment process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.