In cavity quantum electrodynamics (QED) 1-3 , light-matter interaction is probed at its most fundamental level, where individual atoms are coupled to single photons stored in three-dimensional cavities. This unique possibility to experimentally explore the foundations of quantum physics has greatly evolved with the advent of circuit QED 4-13 , where on-chip superconducting qubits and oscillators play the roles of two-level atoms and cavities, respectively. In the strong coupling limit, atom and cavity can exchange a photon frequently before coherence is lost. This important regime has been reached both in cavity and circuit QED, but the design flexibility and engineering potential of the latter allowed for increasing the ratio between the atom-cavity coupling rate g and the cavity transition frequency ωr above the percent level 8,14,15 . While these experiments are well described by the renowned Jaynes-Cummings model 16 , novel physics is expected when g reaches a considerable fraction of ωr. Promising steps towards this so-called ultrastrong coupling regime 17,18 have recently been taken in semiconductor structures 19,20 . Here, we report on the first experimental realization of a superconducting circuit QED system in the ultrastrong coupling limit and present direct evidence for the breakdown of the Jaynes-Cummings model. We reach remarkable normalized coupling rates g/ωr of up to 12 % by enhancing the inductive coupling of a flux qubit 21 to a transmission line resonator using the nonlinear inductance of a Josephson junction 22 . Our circuit extends the toolbox of quantum optics on a chip towards exciting explorations of the ultrastrong interaction between light and matter.In the strong coupling regime, the atom-cavity coupling rate g exceeds the dissipation rates κ and γ of both, cavity and atom, giving rise to coherent light-matter oscillations and superposition states. This regime was reached in various types of systems operating at different energy scales [1][2][3][23][24][25] . At microwave frequencies, strong coupling is feasible due to the enormous engineerability of superconducting circuit QED systems 4,5 . Here, small cavity mode volumes and large dipole moments of artificial atoms 26 enable coupling rates g of about 15 1 % of the cavity mode frequency ω r . Nevertheless, as in cavity QED, the quantum dynamics of these systems follows the Jaynes-Cummings model, which describes the coherent exchange of a single excitation between the atom and the cavity mode. Although the Hamiltonian of a realistic atom-cavity system contains so-called counterrotating terms allowing the simultaneous creation ior annihilation of an excitation in both atom and cavity mode, these terms can be safely neglected for small normalized coupling rates g/ω r . However, when g becomes a significant fraction of ω r , the counterrotating terms are expected to manifest, giving rise to exciting effects in QED.The ultrastrong coupling regime is difficult to reach in traditional quantum optics, but was recently realized in a solid-stat...
We report on ultrastrong coupling between a superconducting flux qubit and a resonant mode of a system comprised of two superconducting coplanar stripline resonators coupled galvanically to the qubit. With a coupling strength as high as 17.5% of the mode frequency, exceeding that of previous circuit quantum electrodynamics experiments, we observe a pronounced Bloch-Siegert shift. The spectroscopic response of our multimode system reveals a clear breakdown of the Jaynes-Cummings approximation. In contrast to earlier experiments, the high coupling strength is achieved without making use of an additional inductance provided by a Josephson junction.
LiBC ist eine neue, nur aus den leichten Elementen der Hauptgruppen bestehende Verbindung. Sie entsteht aus den Elementen in verschweißten Niobampullen bei 770 K und anschließendem kurzzeitigen Tempern bei 1 770 K in Form goldglänzender, hexagonaler Plättchen. Entsprechend Li+(BN)− bilden Bor und Kohlenstoff ebene Heterographitschichten vom Typ des isoelektronischen hexagonalen Bornitrids. Die Bereiche zwischen den Schichten sind durch Lithium vollständig aufgefüllt (P63/mmc; a = 275.2 pm; c = 705.8 pm; hP6; ZrBeSi‐Typ). Die Deformationsdichte der Valenzelektronen beweist für die BC‐Bindungen π‐Charakter und Polarisierung entsprechend (BC−). Nach chemischen und physikalischen Eigenschaften zeigt LiBC eine gewisse Phasenbreite x(Li) ≤ 1. Beim thermischen Abbau und bei chemischen Reaktionen entstehen bisher noch nicht charakterisierte BC‐Produkte. Die Oxidation von LiBC verläuft offenbar nach einem ähnlichen Mechanismus wie bei Graphit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.