Acridine derivatives are interesting chemotherapeutic agents that were first used as antibacterial and antiparasite agents. In this review we wish to concentrate our attention on the anticancer properties of acridines used in clinics since the 1970's. Based on recent results, an outlook on antitumour acridine chemotherapy will be proposed. The biological activity of acridines is mainly attributed to the planarity of these aromatic structures, which can intercalate within the double-stranded DNA structure, thus interfering with the cellular machinery. Recent understanding of the mode of action of acridines leads to continuous and exciting research in this heterocyclic family. Indeed, biological targets such as topoisomerases I and II, telomerase/telomere and protein kinases emerge and allow the design of novel acridine-based patterns. This review further pinpoints the latest progress in the development of anticancer agents based on naturally occurring and synthetic acridines (e.g. acridones, pyridoacridines); for this matter in vitro/in vivo studies and clinical trial results will be discussed. The DNA-affinic property of acridine is also useful to vectorise drugs into cell nuclei and some applications in hypoxia-selective treatment, platinum or N-mustard derived conjugates will be reported. Some other properties including inhibition of multidrug resistance or potential impact on Alzheimer disease will be treated. It is noteworthy that the position and the nature of the substituent on the heterocyclic core are determinants for the biological property and selectivity observed. So, we wish also to disclose a summary of recent synthetic methodologies developed for acridine synthesis.
Porous ionic liquids are non-volatile,v ersatile materials that associate porosity and fluidity.N ew porous ionic liquids,b ased on the ZIF-8 metal-organic framework and on phosphonium acetate or levulinate salts,were prepared and showa ni ncreased capacity to absorb carbon dioxide at low pressures.P orous suspensions based on phosphonium levulinate ionic liquid absorb reversibly 103 %m ore carbon dioxide per mass than pure ZIF-8 at 1bar and 303 K. We show howthe rational combination of MOFs with ionic liquids can greatly enhance low pressure CO 2 absorption, paving the way towards an ew generation of high-performance,r eadily available liquid materials for effective lowp ressure carbon capture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.