The genome of the mesopolyploid crop species Brassica rapaThe Brassica rapa Genome Sequencing Project Consortium 1 Abstract:The Brassicaceae family which includes Arabidopsis thaliana, is a natural priority for reaching beyond botanical models to more deeply sample angiosperm genomic and functional diversity. Here we report the draft genome sequence and its annoation of Brassica rapa, one of the two ancestral species of oilseed rape. We modeled 41,174 protein-coding genes in the B. rapa genome. B. rapa has experienced only the second genome triplication reported to date, with its close relationship to A. thaliana providing a useful outgroup for investigating many consequences of triplication for its structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one copy containing a greater proportion of genes expected to have been present in its ancestor (70%) than the remaining two (46% and 36%). Both a generally rapid evolutionary rate, and specific copy number amplifications of particular gene families, may contribute to the remarkable propensity of Brassica species for the development of new morphological variants. The B. rapa genome provides a new resource for comparative and evolutionary analysis of the Brassicaceae genomes and also a platform for genetic improvement of Brassica oil and vegetable crops.2
SummaryBread wheat (Triticum aestivum) is a globally important crop, accounting for 20% of the calories consumed by mankind. We sequenced its large and challenging 17 Gb hexaploid genome using 454 pyrosequencing and compared this with the sequences of diploid ancestral and progenitor genomes. Between 94,000-96,000 genes were identified, and two-thirds were assigned to the A, B and D genomes. High-resolution synteny maps identified many small disruptions to conserved gene order. We show the hexaploid genome is highly dynamic, with significant loss of gene family members upon polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a new resource for accelerating gene discovery and improving this major crop.
Over 1000 genetically linked RFLP loci in Brassica napus were mapped to homologous positions in the Arabidopsis genome on the basis of sequence similarity. Blocks of genetically linked loci in B. napus frequently corresponded to physically linked markers in Arabidopsis. This comparative analysis allowed the identification of a minimum of 21 conserved genomic units within the Arabidopsis genome, which can be duplicated and rearranged to generate the present-day B. napus genome. The conserved regions extended over lengths as great as 50 cM in the B. napus genetic map, equivalent to 9 Mb of contiguous sequence in the Arabidopsis genome. There was also evidence for conservation of chromosome landmarks, particularly centromeric regions, between the two species. The observed segmental structure of the Brassica genome strongly suggests that the extant Brassica diploid species evolved from a hexaploid ancestor. The comparative map assists in exploiting the Arabidopsis genomic sequence for marker and candidate gene identification within the larger, intractable genomes of the Brassica polyploids.
We sequenced 2.2 Mb representing triplicated genome segments of Brassica oleracea, which are each paralogous with one another and homologous with a segmentally duplicated region of the Arabidopsis thaliana genome. Sequence annotation identified 177 conserved collinear genes in the B. oleracea genome segments. Analysis of synonymous base substitution rates indicated that the triplicated Brassica genome segments diverged from a common ancestor soon after divergence of the Arabidopsis and Brassica lineages. This conclusion was corroborated by phylogenetic analysis of protein families. Using A. thaliana as an outgroup, 35% of the genes inferred to be present when genome triplication occurred in the Brassica lineage have been lost, most likely via a deletion mechanism, in an interspersed pattern. Genes encoding proteins involved in signal transduction or transcription were not found to be significantly more extensively retained than those encoding proteins classified with other functions, but putative proteins predicted in the A. thaliana genome were underrepresented in B. oleracea. We identified one example of gene loss from the Arabidopsis lineage. We found evidence for the frequent insertion of gene fragments of nuclear genomic origin and identified four apparently intact genes in noncollinear positions in the B. oleracea and A. thaliana genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.