Deep mitochondrial divergence within species may result from cryptic speciation, from phylogeographic isolation or from endosymbiotic bacteria like Wolbachia that manipulate host reproduction. Phengaris butterflies are social parasites that spend most of their life in close relationship with ants. Previously, cryptic speciation has been hypothesised for two Phengaris species based on divergent mtDNA sequences. Since Phengaris species are highly endangered, the existence of cryptic species would have drastic consequences for conservation and management. We tested for cryptic speciation and alternative scenarios in P. teleius and P. nausithous based on a comprehensive sample across their Palaearctic ranges using COI gene sequences, nuclear microsatellites and tests for Wolbachia. In both species a deep mitochondrial split occurring 0.65–1.97 myrs ago was observed that did not correspond with microsatellite data but was concordant with Wolbachia infection. Haplotypes previously attributed to cryptic species were part of the Wolbachia-infected clades. In both species remaining phylogeographic structure was largely consistent between mitochondrial and nuclear genomes. In P. teleius several mitochondrial and nuclear groups were observed in East Asia while a single haplogroup and nuclear cluster prevailed across continental Eurasia. Neutrality tests suggested rapid demographic expansion into that area. In contrast, P. nausithous had several mitochondrial and nuclear groups in Europe, suggesting a complex phylogeographic history in the western part of the species range. We conclude that deep intraspecific divergences found in DNA barcode studies do not necessarily need to represent cryptic speciation but instead can be due to both infection by Wolbachia and phylogeographic structure.
Trait-based analyses explaining the different responses of species and communities to environmental changes are increasing in frequency. European butterflies are an indicator group that responds rapidly to environmental changes with extensive citizen science contributions to documenting changes of abundance and distribution. Species traits have been used to explain long- and short-term responses to climate, land-use and vegetation changes. Studies are often characterised by limited trait sets being used, with risks that the relative roles of different traits are not fully explored. Butterfly trait information is dispersed amongst various sources and descriptions sometimes differ between sources. We have therefore drawn together multiple information sets to provide a comprehensive trait database covering 542 taxa and 25 traits described by 217 variables and sub-states of the butterflies of Europe and Maghreb (northwest Africa) which should serve for improved trait-based ecological, conservation-related, phylogeographic and evolutionary studies of this group of insects. We provide this data in two forms; the basic data and as processed continuous and multinomial data, to enhance its potential usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.