The innate immune system limits viral replication via type I interferon and also induces the presentation of viral antigens to cells of the adaptive immune response. Using infection of mice with vesicular stomatitis virus, we analyzed how the innate immune system inhibits viral propagation but still allows the presentation of antigen to cells of the adaptive immune response. We found that expression of the gene encoding the inhibitory protein Usp18 in metallophilic macrophages led to lower type I interferon responsiveness, thereby allowing locally restricted replication of virus. This was essential for the induction of adaptive antiviral immune responses and, therefore, for preventing the fatal outcome of infection. In conclusion, we found that enforced viral replication in marginal zone macrophages was an immunological mechanism that ensured the production of sufficient antigen for effective activation of the adaptive immune response.
Influenza A viruses are a threat to humans due to their ability to cross species barriers, as illustrated by the 2009 H1N1v pandemic and sporadic H5N1 transmissions. Interspecies transmission requires adaptation of the viral polymerase to importin-α, a cellular protein that mediates transport into the nucleus where transcription and replication of the viral genome takes place. In this study, we analysed replication, host specificity and pathogenicity of avian and mammalian influenza viruses, in importin-α-silenced cells and importin-α-knockout mice, to understand the role of individual importin-α isoforms in adaptation. For efficient virus replication, the polymerase subunit PB2 and the nucleoprotein (NP) of avian viruses required importin-α3, whereas PB2 and NP of mammalian viruses showed importin-α7 specificity. H1N1v replication depended on both, importin-α3 and -α7, suggesting ongoing adaptation of this virus. Thus, differences in importin-α specificity are determinants of host range underlining the importance of the nuclear envelope in interspecies transmission.
Transforming growth factor  (TGF-) has been shown to participate in the pathophysiology of diabetic complications. As shown most recently, TGF- stimulates the expression of a distinct serine͞threonine kinase (hSGK) which had previously been cloned as an early gene transcriptionally regulated by cell volume alterations. The present study was performed to elucidate transcription and function of hSGK in diabetic nephropathy. As shown by Northern blotting, an increase of extracellular glucose concentration increased hSGK mRNA levels in cultured cells, an effect qualitatively mimicked by osmotic cell shrinkage or treatment with TGF- (2 g͞liter), phorbol 12,13-didecanoate (1 M), or the Ca 2؉ ionophore ionomycin (1 M) and blunted by high concentrations of nifedipine (10 and 100 M). In situ hybridization revealed that hSGK transcription was markedly enhanced in diabetic nephropathy, with particularly high expression in mesangial cells, interstitial cells, and cells in thick ascending limbs of Henle's loop and distal tubules. According to voltage clamp and tracer flux studies in Xenopus oocytes expressing the renal epithelial Na ؉ channel ENaC or the mouse thick ascending limb Na ؉ ,K ؉ ,2Cl ؊ cotransporter BSC-1, coexpression with hSGK stimulated ENaC and BSC-1 11-fold and 6-fold, respectively, effects reversed by kinase inhibitors staurosporine (1 M) and chelerythrine (1 M) and not elicited by inactive hSGK. In conclusion, excessive extracellular glucose concentrations enhance hSGK transcription, which in turn stimulates renal tubular Na ؉ transport. These observations disclose an additional element in the pathophysiology of diabetic nephropathy.protein kinase C ͉ endothelial cells ͉ kidney ͉ epithelial Na ϩ channel ͉ Na ϩ ,K ϩ ,2Cl Ϫ cotransporter
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.