Abstract. We present an overview of state-of-the-art chemistry-climate and chemistry transport models that are used within phase 1 of the Chemistry-Climate Model Initiative (CCMI-1). The CCMI aims to conduct a detailed evaluation of participating models using process-oriented diagnostics derived from observations in order to gain confidence in the models' projections of the stratospheric ozone layer, tropospheric composition, air quality, where applicable global climate change, and the interactions between them. Interpretation of these diagnostics requires detailed knowledge of the radiative, chemical, dynamical, and physical processes incorporated in the models. Also an understanding of the degree to which CCMI-1 recommendations for simulations have been followed is necessary to understand model responses to anthropogenic and natural forcing and also to explain intermodel differences. This becomes even more important given the ongoing development and the ever-growing complexity of these models. This paper also provides an overview of the available CCMI-1 simulations with the aim of informing CCMI data users.
This paper describes the main characteristics of CNRM-CM6-1, the fully coupled atmosphere-ocean general circulation model of sixth generation jointly developed by Centre National de Recherches Météorologiques (CNRM) and Cerfacs for the sixth phase of the Coupled Model Intercomparison Project 6 (CMIP6). The paper provides a description of each component of CNRM-CM6-1, including the coupling method and the new online output software. We emphasize where model's components have been updated with respect to the former model version, CNRM-CM5.1. In particular, we highlight major improvements in the representation of atmospheric and land processes. A particular attention has also been devoted to mass and energy conservation in the simulated climate system to limit long-term drifts. The climate simulated by CNRM-CM6-1 is then evaluated using CMIP6 historical and Diagnostic, Evaluation and Characterization of Klima (DECK) experiments in comparison with CMIP5 CNRM-CM5.1 equivalent experiments. Overall, the mean surface biases are of similar magnitude but with different spatial patterns. Deep ocean biases are generally reduced, whereas sea ice is too thin in the Arctic. Although the simulated climate variability remains roughly consistent with CNRM-CM5.1, its sensitivity to rising CO 2 has increased: the equilibrium climate sensitivity is 4.9 K, which is now close to the upper bound of the range estimated from CMIP5 models.
[1] The impact of stratospheric ozone on the tropospheric general circulation of the Southern Hemisphere (SH) is examined with a set of chemistry-climate models participating in the Stratospheric Processes and their Role in Climate (SPARC)/Chemistry-Climate Model Validation project phase 2 (CCMVal-2). Model integrations of both the past and future climates reveal the crucial role of stratospheric ozone in driving SH circulation change: stronger ozone depletion in late spring generally leads to greater poleward displacement and intensification of the tropospheric midlatitude jet, and greater expansion of the SH Hadley cell in the summer. These circulation changes are systematic as poleward displacement of the jet is typically accompanied by intensification of the jet and expansion of the Hadley cell. Overall results are compared with coupled models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), and possible mechanisms are discussed. While the tropospheric circulation response appears quasi-linearly related to stratospheric ozone changes, the quantitative response to a given forcing varies considerably from one model to another. This scatter partly results from differences in model climatology. It is shown that poleward intensification of the westerly jet is generally stronger in models whose climatological jet is biased toward lower latitudes. This result is discussed in the context of quasi-geostrophic zonal mean dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.