In filamentous fungi, a programmed cell death (PCD) reaction occurs when cells of unlike genotype fuse. This reaction is caused by genetic differences at specific loci termed het loci (for heterokaryon incompatibility). Although several het genes have been characterized, the mechanism of this cell death reaction and its relation to PCD in higher eukaryotes remains largely unknown. In Podospora anserina, genes induced during the cell death reaction triggered by the het-R het-V interaction have been identified and termed idi genes. Herein, we describe the functional characterization of one idi gene (idi-1) and explore the connection between incompatibility and the response to nutrient starvation. We show that IDI-1 is a cell wall protein which localizes at the septum during normal growth. We found that induction of idi-1 and of the other known idi genes is not specific of the incompatibility reaction. The idi genes are induced upon nitrogen and carbon starvation and by rapamycin, a specific inhibitor of the TOR kinase pathway. The cytological hallmarks of het-R het-V incompatibility (increased septation, vacuolization, coalescence of lipid droplets, induction of autophagy, and cell death) are also observed during rapamycin treatment. Globally the cytological alterations and modifications in gene expression occurring during the incompatibility reaction are similar to those observed during starvation or rapamycin treatment.
The [Het-s] prion of the fungus Podospora anserina propagates as a self-perpetuating amyloid form of the HET-s protein. This protein triggers a cell death reaction termed heterokaryon incompatibility when interacting with the HET-S protein, an allelic variant of HET-s. HET-s displays two distinct domains, a N-terminal globular domain and a C-terminal unstructured prion-forming domain (residues 218-289). Here, we describe the characterization of HET-s(157-289), a truncated form of HET-s bearing an extensive deletion in the globular domain but retaining full activity in incompatibility and prion propagation. In vitro, HET-s(157-289) polymerizes into amyloid fibers displaying the same core region as full-length HET-s fibers. We have shown previously that fusions of green fluorescent protein (GFP) with HET-s or HET-s(218-289) form dot-like aggregates in vivo upon transition to the prion state. By contrast, a HET-s(157-289)/GFP fusion protein forms elongated fibrillar aggregates in vivo. Such elongated aggregates can reach up to 150 μm in length. The in vivo dynamics of these organized structures is analysed by time lapse microscopy. We find that the large elongate structures grow by lateral association of shorter fibrillar aggregates. When co-expressed with HET-s(157-289), full-length HET-s and HET-s(218-289) can be incorporated into such elongated aggregates. Together, our data indicate that HET-s(157-289) aggregates can adopt an organized higher-order structure in vivo and that the ability to adopt this supramolecular organization is conferred by the sequences appended to the amyloid core region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.