Blueberry fruits are known as a rich source of anthocyanin components. In this study we demonstrate that anthocyanins from blueberry have the potency to alleviate symptoms of hyperglycemia in diabetic C57b1/6J mice. The anti-diabetic activity of different anthocyanin-related extracts was evaluated using the pharmaceutically acceptable self-microemulsifying drug delivery system; Labrasol. Treatment by gavage (500 mg/kg body wt) with a phenolic-rich extract and an anthocyaninenriched fraction formulated with Labrasol lowered elevated blood glucose levels by 33 and 51%, respectively. The hypoglycemic activities of these formulae were comparable to that of the known anti-diabetic drug metformin (Baily and Day, 2004; 27% at 300 mg/kg). The extracts were not significantly hypoglycemic when administered without Labrasol, demonstrating its bio-enhancing effect, most likely due to increasing the bioavailability of the administered preparations. The phenolic-rich extract contained 287.0 ± 9.7 mg/g anthocyanins, while the anthocyanin-enriched fraction contained 595 ± 20.0 mg/g (cyanidin-3-glucoside equivalents), as measured by HPLC and pH differential analysis methods. The greater hypoglycemic activity of the anthocyanin-enriched fraction compared to the initial phenolic-rich extract suggested that the activity was due to the anthocyanin components. Treatment by gavage (300 mg/kg) with the pure anthocyanins, delphinidin-3-O-glucoside and malvidin-3-O-glucoside, formulated with Labrasol, showed that malvidin-3-O-glucoside was significantly hypoglycemic while delphinidin-3-O-glucoside was not.
Moringa (Moringa oleifera Lam.) is an edible plant used as food and medicine throughout the tropics. A moringa concentrate (MC) made by extracting fresh leaves with water utilized naturally occurring myrosinase to convert four moringa glucosinolates (1–4) into moringa isothiocyanates (5–8). Optimum conditions maximizing MC yield, compound 5 (4-[(α-L-rhamnosyloxy)benzyl]isothiocyanate), and compound 8 (4-[(4’-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate) content were established (1:5 fresh leaf weight to water ratio at room temperature). The optimized MC contained 1.66% isothiocyanates and 3.82% total polyphenols. Compound 8 exhibited 80% stability at 37 °C for 30 days. MC, 5, and 8 significantly decreased gene expression and production of inflammatory markers in RAW macrophages. Specifically, 5 and 8 attenuated expression of iNOS and IL-1β and production of nitric oxide and TNFβ at 1 and 5 µM. Our results suggest a potential for stable and concentrated moringa isothiocyanates (5–8), delivered in MC as a food-grade product, to alleviate low-grade inflammation associated with chronic diseases.
Neuropathological evidence indicates that dopaminergic cell death in Parkinson’s disease (PD) involves impairment of mitochondrial complex I, oxidative stress, microglial activation, and the formation of Lewy bodies. Epidemiological findings suggest that the consumption of berries rich in anthocyanins and proanthocyanidins may reduce PD risk. In this study, we investigated whether extracts rich in anthocyanins, proanthocyanidins, or other polyphenols suppress the neurotoxic effects of rotenone in a primary cell culture model of PD. Dopaminergic cell death elicited by rotenone was suppressed by extracts prepared from blueberries, grape seed, hibiscus, blackcurrant, and Chinese mulberry. Extracts rich in anthocyanins and proanthocyanidins exhibited greater neuroprotective activity than extracts rich in other polyphenols, and a number of individual anthocyanins interfered with rotenone neurotoxicity. The blueberry and grape seed extracts rescued rotenone-induced defects in mitochondrial respiration in a dopaminergic cell line, and a purple basal extract attenuated nitrite release from microglial cells stimulated by lipopolysaccharide. These findings suggest that anthocyanin- and proanthocyanidin-rich botanical extracts may alleviate neurodegeneration in PD via enhancement of mitochondrial function.
We used a murine model of type II diabetes, which reproduces the major features of the human disease, and a number of cellular models to study the antidiabetic effect of ANC, a standardised anthocyanin-rich formulation from maqui berry (Aristotelia chilensis). We also isolated delphinidin 3-sambubioside-5-glucoside (D3S5G), a characteristic anthocyanin from maqui berry, and studied its antidiabetic properties. We observed that oral administration of ANC improved fasting blood glucose levels and glucose tolerance in hyperglycaemic obese C57BL/6J mice fed a high fat diet. In H4IIE rat liver cells, ANC decreased glucose production and enhanced the insulin-stimulated down regulation of the gluconeogenic enzyme, glucose-6-phosphatase. In L6 myotubes ANC treatment increased both insulin and non-insulin mediated glucose uptake. As with the ACN, oral administration of pure D3S5G dose-dependently decreased fasting blood glucose levels in obese C57BL/6J mice, and decreased glucose production in rat liver cells. D3S5G also increased glucose uptake in L6 myotubes and is at least partially responsible for ANC’s anti-diabetic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.