The presence of self-reactive IgG autoantibodies in human sera is largely thought to represent a breakdown in central tolerance and is typically regarded as a harbinger of autoimmune pathology. In the present study, immune-response profiling of human serum from 166 individuals via human protein microarrays demonstrates that IgG autoantibodies are abundant in all human serum, usually numbering in the thousands. These IgG autoantibodies bind to human antigens from organs and tissues all over the body and their serum diversity is strongly influenced by age, gender, and the presence of specific diseases. We also found that serum IgG autoantibody profiles are unique to an individual and remarkably stable over time. Similar profiles exist in rat and swine, suggesting conservation of this immunological feature among mammals. The number, diversity, and apparent evolutionary conservation of autoantibody profiles suggest that IgG autoantibodies have some important, as yet unrecognized, physiological function. We propose that IgG autoantibodies have evolved as an adaptive mechanism for debris-clearance, a function consistent with their apparent utility as diagnostic indicators of disease as already established for Alzheimer’s and Parkinson’s diseases.
Previous studies have reported immunoglobulin-positive neurons in Alzheimer's disease (AD) brains, an observation indicative of blood-brain barrier (BBB) breakdown. Recently, we demonstrated the nearly ubiquitous presence of brain-reactive autoantibodies in human sera. The significance of these observations to AD pathology is unknown. Here, we show that IgG-immunopositive neurons are abundant in brain regions exhibiting AD pathology, including intraneuronal amyloid-β(42) (Aβ(42)) and amyloid plaques, and confirm by western analysis that brain-reactive autoantibodies are nearly ubiquitous in human serum. To investigate a possible interrelationship between neuronal antibody binding and Aβ pathology, we tested the effects of human serum autoantibodies on the intraneuronal deposition of soluble Aβ(42) peptide in adult mouse neurons in vitro (organotypic brain slice cultures). Binding of human autoantibodies to mouse neurons dramatically increased the rate and extent of intraneuronal Aβ(42) accumulation in the mouse cerebral cortex and hippocampus. Additionally, individual sera exhibited variable potency related to their capacity to enhance intraneuronal Aβ(42) peptide accumulation and immunolabel neurons in AD brain sections. Replacement of human sera with antibodies targeting abundant neuronal surface proteins resulted in a comparable enhancement of Aβ(42) accumulation in mouse neurons. Overall, results suggest that brain-reactive autoantibodies are ubiquitous in the blood and that a defective BBB allows these antibodies to access the brain interstitium, bind to neuronal surfaces and enhance intraneuronal deposition of Aβ(42) in AD brains. Thus, in the context of BBB compromise, brain-reactive autoantibodies may be an important risk factor for the initiation and/or progression of AD as well as other neurodegenerative diseases.
Diabetes mellitus (DM) and hypercholesterolemia (HC) have emerged as major risk factors for Alzheimer's disease, highlighting the importance of vascular health to normal brain functioning. Our previous study showed that DM and HC favor the development of advanced coronary atherosclerosis in a porcine model, and that treatment with darapladib, an inhibitor of lipoprotein-associated phospholipase A2, blocks atherosclerosis progression and improves animal alertness and activity levels. In the present study, we examined the effects of DM and HC on the permeability of the blood-brain barrier (BBB) using immunoglobulin G (IgG) as a biomarker. DMHC increased BBB permeability and the leak of microvascular IgG into the brain interstitium, which was bound preferentially to pyramidal neurons in the cerebral cortex. We also examined the effects of DMHC on the brain deposition of amyloid peptide (Aβ42), a well-known pathological feature of Alzheimer's disease. Nearly all detectable Aβ42 was contained within cortical pyramidal neurons and DMHC increased the density of Aβ42-loaded neurons. Treatment of DMHC animals with darapladib reduced the amount of IgG-immunopositive material that leaked into the brain as well as the density of Aβ42-containing neurons. Overall, these results suggest that a prolonged state of DMHC may have chronic deleterious effects on the functional integrity of the BBB and that, in this DMHC pig model, darapladib reduces BBB permeability. Also, the preferential binding of IgG and coincident accumulation of Aβ42 in the same neurons suggests a mechanistic link between the leak of IgG through the BBB and intraneuronal deposition of Aβ42 in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.