BACKGROUND Myeloablative allogeneic hematopoietic stem-cell transplantation is curative in children with sickle cell disease, but in adults the procedure is unduly toxic. Graft rejection and graft-versus-host disease (GVHD) are additional barriers to its success. We performed nonmyeloablative stem-cell transplantation in adults with sickle cell disease. METHODS Ten adults (age range, 16 to 45 years) with severe sickle cell disease underwent nonmyeloablative transplantation with CD34+ peripheral-blood stem cells, mobilized by granulocyte colony-stimulating factor (G-CSF), which were obtained from HLA-matched siblings. The patients received 300 cGy of total-body irradiation plus alemtuzumab before transplantation, and sirolimus was administered afterward. RESULTS All 10 patients were alive at a median follow-up of 30 months after transplantation (range, 15 to 54). Nine patients had long-term, stable donor lymphohematopoietic engraftment at levels that sufficed to reverse the sickle cell disease phenotype. Mean (±SE) donor–recipient chimerism for T cells (CD3+) and myeloid cells (CD14+15+) was 53.3±8.6% and 83.3±10.3%, respectively, in the nine patients whose grafts were successful. Hemoglobin values before transplantation and at the last follow-up assessment were 9.0±0.3 and 12.6±0.5 g per deciliter, respectively. Serious adverse events included the narcotic-withdrawal syndrome and sirolimus-associated pneumonitis and arthralgia. Neither acute nor chronic GVHD developed in any patient. CONCLUSIONS A protocol for nonmyeloablative allogeneic hematopoietic stem-cell transplantation that includes total-body irradiation and treatment with alemtuzumab and sirolimus can achieve stable, mixed donor–recipient chimerism and reverse the sickle cell phenotype.
IMPORTANCE Myeloablative allogeneic hematopoietic stem cell transplantation (HSCT) is curative for children with severe sickle cell disease, but toxicity may be prohibitive for adults. Nonmyeloablative transplantation has been attempted with degrees of preparative regimen intensity, but graft rejection and graft-vs-host disease remain significant. OBJECTIVE To determine the efficacy, safety, and outcome on end-organ function with this low-intensity regimen for sickle cell phenotype with or without thalassemia. DESIGN, SETTING, AND PARTICIPANTS From July 16, 2004, to October 25, 2013, 30 patients aged 16–65 years with severe disease enrolled in this nonmyeloablative transplant study, consisting of alemtuzumab (1 mg/kg in divided doses), total-body irradiation (300 cGy), sirolimus, and infusion of unmanipulated filgrastim mobilized peripheral blood stem cells (5.5–31.7 × 106 cells/kg) from human leukocyte antigen–matched siblings. MAIN OUTCOMES AND MEASURES The primary end point was treatment success at 1 year after the transplant, defined as a full donor-type hemoglobin for patients with sickle cell disease and transfusion independence for patients with thalassemia. The secondary end points were the level of donor leukocyte chimerism; incidence of acute and chronic graft-vs-host disease; and sickle cell–thalassemia disease-free survival, immunologic recovery, and changes in organ function, assessed by annual brain imaging, pulmonary function, echocardiographic image, and laboratory testing. RESULTS Twenty-nine patients survived a median 3.4 years (range, 1–8.6), with no nonrelapse mortality. One patient died from intracranial bleeding after relapse. As of October 25, 2013, 26 patients (87%) had long-term stable donor engraftment without acute or chronic graft-vs-host disease. The mean donor T-cell level was 48% (95% CI, 34%–62%); the myeloid chimerism levels, 86% (95% CI, 70%–100%). Fifteen engrafted patients discontinued immunosuppression medication with continued stable donor chimerism and no graft-vs-host disease. The normalized hemoglobin and resolution of hemolysis among engrafted patients were accompanied by stabilization in brain imaging, a reduction of echocardiographic estimates of pulmonary pressure, and allowed for phlebotomy to reduce hepatic iron. The mean annual hospitalization rate was 3.23 (95%CI, 1.83–4.63) the year before, 0.63 (95% CI, 0.26–1.01) the first year after,0.19 (95% CI, 0–0.45) the second year after, and 0.11 (95%CI, 0.04–0.19) the third year after transplant. For patients taking long-term narcotics, the mean use per week was 639 mg (95%CI, 220–1058) of intravenous morphine–equivalent dose the week of their transplants and 140 mg (95% CI, 56–225) 6 months after transplant. There were 38 serious adverse events: pain and related management, infections, abdominal events, and sirolimus related toxic effects. CONCLUSIONS AND RELEVANCE Among 30 patients with sickle cell phenotype with or without thalassemia who underwent nonmyeloablative allogeneic HSCT, the rate of stable mixed...
Novel curative therapies using genetic transfer of normal globin-producing genes into autologous hematopoietic stem cells (HSCs) are in clinical trials for patients with sickle cell disease (SCD). The percentage of transferred globin necessary to cure SCD is currently not known. In the setting of allogeneic nonmyeloablative HSC transplants (HSCTs), stable mixed chimerism is sufficient to reverse the disease. We regularly monitored 67 patients after HSCT. After initially robust engraftment, 3 of these patients experienced declining donor myeloid chimerism (DMC) levels with eventual return of disease. From this we discovered that 20% DMC is necessary to reverse the sickle phenotype. We subsequently developed a mathematical model to test the hypothesis that the percentage of DMC necessary is determined solely by differences between donor and recipient red blood cell (RBC) survival times. In our model, the required 20% DMC can be entirely explained by the large differences between donor and recipient RBC survival times. Our model predicts that the requisite DMC and therefore necessary level of transferred globin is lowest in patients with the highest reticulocyte counts and concomitantly shortened RBC lifespans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.