Most genetic variants associated with type 2 diabetes mellitus (T2DM) have been identified through genome-wide association studies (GWASs) in Europeans. The current study reports a GWAS for young-onset T2DM in American Indians. Participants were selected from a longitudinal study conducted in Pima Indians and included 278 cases with diabetes with onset before 25 years of age, 295 nondiabetic controls ≥45 years of age, and 267 siblings of cases or controls. Individuals were genotyped on a ∼1M single nucleotide polymorphism (SNP) array, resulting in 453,654 SNPs with minor allele frequency >0.05. SNPs were analyzed for association in cases and controls, and a family-based association test was conducted. Tag SNPs (n = 311) were selected for 499 SNPs associated with diabetes (P < 0.0005 in case-control analyses or P < 0.0003 in family-based analyses), and these SNPs were genotyped in up to 6,834 additional Pima Indians to assess replication. Rs1861612 in DNER was associated with T2DM (odds ratio = 1.29 per copy of the T allele; P = 6.6 × 10−8, which represents genome-wide significance accounting for the number of effectively independent SNPs analyzed). Transfection studies in murine pancreatic β-cells suggested that DNER regulates expression of notch signaling pathway genes. These studies implicate DNER as a susceptibility gene for T2DM in American Indians.
Features of melanocortin-4 receptor (MC4R) deficiency have been observed to be more pronounced in childhood. Longitudinal data from a population-based study were used to separate the phenotypic effects of MC4R deficiency during childhood and adulthood. The MC4R exon was sequenced in 6,760 individuals of predominantly Pima Indian heritage, and discovered mutations were functionally assessed in vitro. Effects on BMI, height, and slope of BMI change were assessed during childhood (ages 5–20 years) and adulthood (ages 20–45 years). Six mutations affecting MC4R function, including three that may be private to Pima Indians, were found in 159 individuals (2.4%). The slope of BMI increase was greater in individuals carrying an MC4R mutation compared with noncarriers during childhood but not during adulthood. The final adult height obtained was higher in individuals with MC4R deficiency. There was an increased risk for developing type 2 diabetes in individuals with a defective MC4R during childhood and adulthood, but this was only independent of BMI in childhood. The greater rates of body mass accumulation and risk of type 2 diabetes before the age of 20 years in individuals with MC4R deficiency indicate that the effects of these mutations are more apparent during the active growth of childhood.
Structure-based drug repositioning in addition to random chemical screening is now a viable route to rapid drug development. Proteochemometric computational methods coupled with kinase assays showed that mebendazole (MBZ) binds and inhibits kinases important in cancer, especially both BRAFWT and BRAFV600E. We find that MBZ synergizes with the MEK inhibitor trametinib to inhibit growth of BRAFWT-NRASQ61K melanoma cells in culture and in xenografts, and markedly decreased MEK and ERK phosphorylation. Reverse Phase Protein Array (RPPA) and immunoblot analyses show that both trametinib and MBZ inhibit the MAPK pathway, and cluster analysis revealed a protein cluster showing strong MBZ+trametinib - inhibited phosphorylation of MEK and ERK within 10 minutes, and its direct and indirect downstream targets related to stress response and translation, including ElK1 and RSKs within 30 minutes. Downstream ERK targets for cell cycle, including cMYC, were down-regulated, consistent with S- phase suppression by MBZ+trametinib, while apoptosis markers, including cleaved caspase-3, cleaved PARP and a sub-G1 population, were all increased with time. These data suggest that MBZ, a well-tolerated off-patent approved drug, should be considered as a therapeutic option in combination with trametinib, for patients with NRASQ61mut or other non-V600E BRAF mutant melanomas.
FDA-approved kinase inhibitors are now used for melanoma, including combinations of the MEK inhibitor trametinib, and BRAF inhibitor dabrafenib for BRAFV600 mutations. NRAS-mutated cell lines are also sensitive to MEK inhibitionin vitro, and NRAS-mutated tumors have also shown partial response to MEK inhibitors. However, melanoma still has high recurrence rates due to subpopulations, sometimes described as “melanoma initiating cells,” resistant to treatment. Since CD133 is a putative cancer stem cell marker for different cancers, associated with decreased survival, we examined resistance of patient-derived CD133(+) and CD133(-) melanoma cells to MAPK inhibitors. Human melanoma cells were exposed to increasing concentrations of trametinib and/or dabrafenib, either before or after separation into CD133(+) and CD133(-) subpopulations. In parental CD133-mixed lines, the percentages of CD133(+) cells increased significantly (p<0.05) after high-dose drug treatment. Presorted CD133(+) cells also exhibited significantly greater (p<0.05) IC50s for single and combination MAPKI treatment. siRNA knockdown revealed a causal relationship between CD133 and drug resistance. Microarray and qRT-PCR analyses revealed that ten of 18 ABC transporter genes were significantly (P<0.05) upregulated in the CD133(+) subpopulation, while inhibition of ABC activity increased sensitivity, suggesting a mechanism for increased drug resistance of CD133(+) cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.