SUMMARY Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for over 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole genome sequence analysis revealed frequent structural re-arrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.
The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR mutant non-small cell lung cancer (NSCLC) is limited by the development of drug resistance mutations, including the gatekeeper T790M mutation1-3. Strategies aimed at targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild type EGFR4,5. All current EGFR inhibitors possess a structurally related quinazoline based core scaffold and were identified as ATP-competitive inhibitors of wild type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30-100 fold more potent against EGFR T790M, and up to 100 fold less potent against wild type EGFR, than quinazoline based EGFR inhibitors in vitro and are effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant selective kinase inhibitors.
Summary MET amplification activates ERBB3/PI3K/AKT signaling in EGFR mutant lung cancers, and causes resistance to EGFR kinase inhibitors. We demonstrate that MET activation by its ligand, HGF, also induces drug resistance, but through GAB1 signaling. Using high-throughput FISH analyses in both cell lines and in lung cancer patients, we identify subpopulations of cells with MET amplification prior to drug exposure. Surprisingly, HGF accelerates the development of MET amplification both in vitro and in vivo. EGFR kinase inhibitor resistance, due to either MET amplification or autocrine HGF production, was cured in vivo by combined EGFR and MET inhibition. These findings highlight the potential to prospectively identify treatment naïve EGFR mutant lung cancer patients who will benefit from initial combination therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.