Background-The purpose of this study was to evaluate the long-term safety of the Igaki-Tamai stent, the first-in-human fully biodegradable coronary stent made of poly-l-lactic acid. Methods and Results-Between September 1998 and April 2000, 50 patients with 63 lesions were treated electively with 84 Igaki-Tamai stents. Overall clinical follow-up (Ͼ10 years) of major adverse cardiac events and rates of scaffold thrombosis was analyzed together with the results of angiography and intravascular ultrasound. Major adverse cardiac events included all-cause death, nonfatal myocardial infarction, and target lesion revascularization/target vessel revascularization. During the overall clinical follow-up period (121Ϯ17 months), 2 patients were lost to follow-up. There were 1 cardiac death, 6 noncardiac deaths, and 4 myocardial infarctions. Survival rates free of all-cause death, cardiac death, and major adverse cardiac events at 10 years were 87%, 98%, and 50%, respectively. The cumulative rates of target lesion revascularization (target vessel revascularization) were 16% (16%) at 1 year, 18% (22%) at 5 years, and 28% (38%) at 10 years. Two definite scaffold thromboses (1 subacute, 1 very late) were recorded. The latter case was related to a sirolimus-eluting stent, which was implanted for a lesion proximal to an Igaki-Tamai stent. From the analysis of intravascular ultrasound data, the stent struts mostly disappeared within 3 years. The external elastic membrane area and stent area did not change. Conclusion-Acceptable major adverse cardiac events and scaffold thrombosis rates without stent recoil and vessel remodeling suggested the long-term safety of the Igaki-Tamai stent. (Circulation. 2012;125:2343-2352.)
Mast cells are believed to be involved in the pathophysiology of heart failure, but their precise role in the process is unknown. This study examined the role of mast cells in the progression of heart failure, using mast cell-deficient (WBB6F1-W/Wv) mice and their congenic controls (wild-type [WT] mice). Systolic pressure overload was produced by banding of the abdominal aorta, and cardiac function was monitored over 15 wk. At 4 wk after aortic constriction, cardiac hypertrophy with preserved left ventricular performance (compensated hypertrophy) was observed in both W/Wv and WT mice. Thereafter, left ventricular performance gradually decreased in WT mice, and pulmonary congestion became apparent at 15 wk (decompensated hypertrophy). In contrast, decompensation of cardiac function did not occur in W/Wv mice; left ventricular performance was preserved throughout, and pulmonary congestion was not observed. Perivascular fibrosis and upregulation of mast cell chymase were all less apparent in W/Wv mice. Treatment with tranilast, a mast cell–stabilizing agent, also prevented the evolution from compensated hypertrophy to heart failure. These observations suggest that mast cells play a critical role in the progression of heart failure. Stabilization of mast cells may represent a new approach in the management of heart failure.
Anti-IL-1beta treatment suppressed pro-collagen gene expression and delayed wound healing mechanisms-properties that are likely to lead to progression of LV remodeling. In the acute phase of MI, IL-1beta appears to play a protective role.
Six months of DAPT was not inferior to 18 months of DAPT following implantation of a DES with a biodegradable abluminal coating. However, this result needs to be interpreted with caution given the open-label design and wide noninferiority margin of the present study. (Nobori Dual Antiplatelet Therapy as Appropriate Duration [NIPPON]; NCT01514227).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.