Although recent studies have reported that low-intensity resistance training with blood flow restriction could stress the muscle effectively and provide rapid muscle hypertrophy and strength gain equivalent to those of high-intensity resistance training, the exact mechanism and its generality have not yet been clarified. We investigated the intramuscular metabolism during low-intensity resistance exercise with blood flow restriction and compared it with that of high-intensity and low-intensity resistance exercises without blood flow restriction using (31)P-magnetic resonance spectroscopy. Twenty-six healthy subjects (22 +/- 4 yr) participated and performed unilateral plantar flexion (30 repetitions/min) for 2 min. Protocols were as follows: low-intensity exercise (L) using a load of 20% of one-repetition maximum (1 RM), L with blood flow restriction (LR), and high-intensity exercise using 65% 1 RM (H). Intramuscular phosphocreatine (PCr) and diprotonated phosphate (H(2)PO(4)(-)) levels and intramuscular pH at rest and during exercise were obtained. We found that the PCr depletion, the H(2)PO(4)(-) increase, and the intramuscular pH decrease during LR were significantly greater than those in L (P < 0.001); however, those in LR were significantly lower than those in H (P < 0.001). The recruitment of fast-twitch fiber evaluated by inorganic phosphate splitting occurred in only 31% of the subjects in LR, compared with 70% in H. In conclusion, the metabolic stress in skeletal muscle during low-intensity resistance exercise was significantly increased by applying blood flow restriction, but did not generally reach that during high-intensity resistance exercise. This new method of resistance training needs to be examined for optimization of the protocol to reach equivalence with high-intensity resistance training.
Our previous study reported that intramuscular metabolic stress during low-intensity resistance exercise was significantly enhanced by combining blood flow restriction (BFR); however, they did not reach the levels achieved during high-intensity resistance exercise. That study was performed using a single set of exercise; however, usual resistance exercise consists of multiple sets with rest intervals. Therefore, we investigated the intramuscular metabolic stress during multiple-set BFR exercises, and compared the results with those during multiple-set high-intensity resistance exercise. Twelve healthy young subjects performed 3 sets of 1-min unilateral plantar flexion (30 repetitions) with 1-min intervals under 4 different conditions: low intensity (L, 20 % 1 RM) and high intensity (H, 65 % 1 RM) without BFR, and L with intermittent BFR (IBFR, only during exercise) and with continuous BFR (CBFR, during rest intervals as well as exercise). Intramuscular metabolic stress, defined as intramuscular metabolites and pH, and muscle fiber recruitment were evaluated by 31P-magnetic resonance spectroscopy. The changes of intramuscular metabolites and pH during IBFR were significantly greater than those in L but significantly lower than those in H. By contrast, those changes in CBFR were similar to those in H. Moreover, the fast-twitch fiber recruitment, evaluating by a splitting Pi peak, showed a similar level to H. In conclusion, the multiple sets of low-intensity resistance exercise with continuous BFR could achieve with the same metabolic stress as multiple sets of high-intensity resistance exercise.
Functionally impaired variants of COQ2 were associated with an increased risk of multiple-system atrophy in multiplex families and patients with sporadic disease, providing evidence of a role of impaired COQ2 activities in the pathogenesis of this disease. (Funded by the Japan Society for the Promotion of Science and others.).
Acute autonomic and sensory neuropathy is a rare disorder that has been only anecdotally reported. We characterized the clinical, electrophysiological, pathological and prognostic features of 21 patients with acute autonomic and sensory neuropathy. An antecedent event, mostly an upper respiratory tract or gastrointestinal tract infection, was reported in two-thirds of patients. Profound autonomic failure with various degrees of sensory impairment characterized the neuropathic features in all patients. The initial symptoms were those related to autonomic disturbance or superficial sensory impairment in all patients, while deep sensory impairment accompanied by sensory ataxia subsequently appeared in 12 patients. The severity of sensory ataxia tended to become worse as the duration from the onset to the peak phase of neuropathy became longer (P<0.001). The distribution of sensory manifestations included the proximal regions of the limbs, face, scalp and trunk in most patients. It tended to be asymmetrical and segmental, rather than presenting as a symmetric polyneuropathy. Pain of the involved region was a common and serious symptom. In addition to autonomic and sensory symptoms, coughing episodes, psychiatric symptoms, sleep apnoea and aspiration, pneumonia made it difficult to manage the clinical condition. Nerve conduction studies revealed the reduction of sensory nerve action potentials in patients with sensory ataxia, while it was relatively preserved in patients without sensory ataxia. Magnetic resonance imaging of the spinal cord revealed a high-intensity area in the posterior column on T(2)*-weighted gradient echo image in patients with sensory ataxia but not in those without it. Sural nerve biopsy revealed small-fibre predominant axonal loss without evidence of nerve regeneration. In an autopsy case with impairment of both superficial and deep sensations, we observed severe neuronal cell loss in the thoracic sympathetic and dorsal root ganglia, and Auerbach's plexus with well preserved anterior hone cells. Myelinated fibres in the anterior spinal root were preserved, while those in the posterior spinal root and the posterior column of the spinal cord were depleted. Although recovery of sensory impairment was poor, autonomic dysfunction was ameliorated to some degree within several months in most patients. In conclusion, an immune-mediated mechanism may be associated with acute autonomic and sensory neuropathy. Small neuronal cells in the autonomic and sensory ganglia may be affected in the initial phase, and subsequently, large neuronal cells in the sensory ganglia are damaged.
Our previous study reported that metabolic stress in skeletal muscle achieved by combining moderate blood flow restriction (BFR) with low-intensity resistance exercise at 20% of one repetition maximum (1 RM) could not reach the level achieved by high-intensity resistance exercise. Since the previous protocol is typical of current regimens of this type, we sought in this study to optimize the exercise protocol for low-intensity resistance exercise with BFR by examining the dose effects of exercise intensity and pressure. Twelve healthy subjects participated in this study. They were asked to perform unilateral plantar flexion for 2 min (30 repetitions/min) under six different conditions: two resistance exercises (20% 1 RM and 65% 1 RM) without BFR, and four BFR protocols. The four BFR protocols included three different exercise intensities (20, 30, and 40% 1 RM) with moderate pressure (MP) using 130% of systolic blood pressure (147+/-17 mmHg, mean+/-SD) and 20% 1 RM with high pressure at 200 mmHg. Intramuscular metabolites and pH were obtained by 31P-magnetic resonance spectroscopy. Significant dose effects on intramuscular metabolites and pH were observed for exercise intensity (P<0.001) but not for BFR pressure. The BFR protocol combining 30% 1 RM with MP had similar results as the high-intensity load at 65% 1 RM. Intramuscular metabolic stress during BFR exercise might be susceptible to increasing exercise intensity. To replace high-intensity resistance exercise, the BFR protocol might require an intensity of >or=30% 1 RM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.