Summary1. In coastal and estuarine systems, foundation species like seagrasses, mangroves, saltmarshes or corals provide important ecosystem services. Seagrasses are globally declining and their reintroduction has been shown to restore ecosystem functions. However, seagrass restoration is often challenging, given the dynamic and stressful environment that seagrasses often grow in. 2. From our world-wide meta-analysis of seagrass restoration trials (1786 trials), we describe general features and best practice for seagrass restoration. We confirm that removal of threats is important prior to replanting. Reduced water quality (mainly eutrophication), and construction activities led to poorer restoration success than, for instance, dredging, local direct impact and natural causes. Proximity to and recovery of donor beds were positively corre- The meta-analysis shows that both trial survival and seagrass population growth rate in trials that survived are positively affected by the number of plants or seeds initially transplanted. This relationship between restoration scale and restoration success was not related to trial characteristics of the initial restoration. The majority of the seagrass restoration trials have been very small, which may explain the low overall trial survival rate (i.e. estimated 37%). 4. Successful regrowth of the foundation seagrass species appears to require crossing a minimum threshold of reintroduced individuals. Our study provides the first global field evidence for the requirement of a critical mass for recovery, which may also hold for other foundation species showing strong positive feedback to a dynamic environment. 5. Synthesis and applications. For effective restoration of seagrass foundation species in its typically dynamic, stressful environment, introduction of large numbers is seen to be beneficial and probably serves two purposes. First, a large-scale planting increases trial survival -large numbers ensure the spread of risks, which is needed to overcome high natural variability. Secondly, a large-scale trial increases population growth rate by enhancing selfsustaining feedback, which is generally found in foundation species in stressful environments such as seagrass beds. Thus, by careful site selection and applying appropriate techniques, spreading of risks and enhancing self-sustaining feedback in concert increase success of seagrass restoration.
Nutrient pollution and reduced grazing each can stimulate algal blooms as shown by numerous experiments. But because experiments rarely incorporate natural variation in environmental factors and biodiversity, conditions determining the relative strength of bottom-up and top-down forcing remain unresolved. We factorially added nutrients and reduced grazing at 15 sites across the range of the marine foundation species eelgrass (Zostera marina) to quantify how top-down and bottom-up control interact with natural gradients in biodiversity and environmental forcing. Experiments confirmed modest top-down control of algae, whereas fertilisation had no general effect. Unexpectedly, grazer and algal biomass were better predicted by cross-site variation in grazer and eelgrass diversity than by global environmental gradients. Moreover, these large-scale patterns corresponded strikingly with prior small-scale experiments. Our results link global and local evidence that biodiversity and top-down control strongly influence functioning of threatened seagrass ecosystems, and suggest that biodiversity is comparably important to global change stressors.
Despite the importance of coastal ecosystems for the global carbon budgets, knowledge of their carbon storage capacity and the factors driving variability in storage capacity is still limited. Here we provide an estimate on the magnitude and variability of carbon stocks within a widely distributed marine foundation species throughout its distribution area in temperate Northern Hemisphere. We sampled 54 eelgrass (Zostera marina) meadows, spread across eight ocean margins and 36° of latitude, to determine abiotic and biotic factors influencing organic carbon (Corg) stocks in Zostera marina sediments. The Corg stocks (integrated over 25‐cm depth) showed a large variability and ranged from 318 to 26,523 g C/m2 with an average of 2,721 g C/m2. The projected Corg stocks obtained by extrapolating over the top 1 m of sediment ranged between 23.1 and 351.7 Mg C/ha, which is in line with estimates for other seagrasses and other blue carbon ecosystems. Most of the variation in Corg stocks was explained by five environmental variables (sediment mud content, dry density and degree of sorting, and salinity and water depth), while plant attributes such as biomass and shoot density were less important to Corg stocks. Carbon isotopic signatures indicated that at most sites <50% of the sediment carbon is derived from seagrass, which is lower than reported previously for seagrass meadows. The high spatial carbon storage variability urges caution in extrapolating carbon storage capacity between geographical areas as well as within and between seagrass species.
Organic carbon (OC) stored in the sediments of seagrass meadows has been considered a globally significant OC reservoir. However, the sparsity and regional bias of studies on long-term OC accumulation in coastal sediments have limited reliable estimation of the capacity of seagrass meadows as a global OC sink. We evaluated the amount and accumulation rate of OC in sediment of seagrass meadows and adjacent areas in East and Southeast Asia. In temperate sites, the average OC concentration in the top 30 cm of sediment was higher in seagrass meadows (780-1080 μmol g . Carbon isotope mass balancing suggested that the contribution of seagrass-derived carbon to OC stored in sediments was often relatively minor (temperate: 10-40%; subtropical: 35-82%; tropical: 4-34%) and correlated to the habitat type, being particularly low in estuarine habitats. Stock of OC in the top meter of sediment of all the studied meadows ranged from 38 to 120 Mg ha À1 . The sediment accumulation rates were estimated by radiocarbon dating of six selected cores (0.32-1.34 mm yr À1). The long-term OC accumulation rates calculated from the sediment accumulation rate and the top 30 cm average OC concentration for the seagrass meadows (24-101 kg ha À1 yr À1 ) were considerably lower than the OC accumulation rates previously reported for Mediterranean Posidonia oceanica meadows (580 kg ha À1 yr À1 on average). Current estimates for the global carbon sink capacity of seagrass meadows, which rely largely on Mediterranean studies, may be considerable overestimations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.