Object Although multimodal intraoperative spinal cord monitoring provides greater accuracy, transcranial electrical stimulation motor evoked potential (TcMEP) monitoring became the gold standard for intraoperative spinal cord monitoring. However, there is no definite alarm point for TcMEPs because a multicenter study is lacking. Thus, based on their experience with 48 true-positive cases (that is, a decrease in potentials followed by a new neurological motor deficit postoperatively) encountered between 2007 and 2009, the authors set a 70% decrease in amplitude as the alarm point for TcMEPs. Methods A total of 959 cases of spinal deformity, spinal cord tumor, and ossification of the posterior longitudinal ligament (OPLL) treated between 2010 and 2012 are included in this prospective multicenter study (18 institutions). These institutions are part of the Japanese Society for Spine Surgery and Related Research monitoring working group and the study group on spinal ligament ossification. The authors prospectively analyzed TcMEP variability and pre- and postoperative motor deficits. A 70% decrease in amplitude was designated as the alarm point. Results There were only 2 false-negative cases, which occurred during surgery for intramedullary spinal cord tumors. This new alarm criterion provided high sensitivity (95%) and specificity (91%) for intraoperative spinal cord monitoring and favorable accuracy, except in cases of intramedullary spinal cord tumor. Conclusions This study is the first prospective multicenter study to investigate the alarm point of TcMEPs. The authors recommend the designation of an alarm point of a 70% decrease in amplitude for routine spinal cord monitoring, particularly during surgery for spinal deformity, OPLL, and extramedullary spinal cord tumor.
Study Design. Prospective multicenter study. Objective. To analyze the incidence of intraoperative spinal neuromonitoring (IONM) alerts and neurological complications, as well as to determine which interventions are most effective at preventing postoperative neurological complications following IONM alerts in high risk spinal surgeries. Summary of Background Data. IONM may play a role in identifying and preventing neural damage; however, few studies have clarified the outcomes of intervention after IONM alerts. Methods. We analyzed 2867 patients who underwent surgery for high risk spinal pathology using transcranial electrical motor-evoked potentials from 2010 to 2016. The high-risk spinal surgery cases consisted of 1009 spinal deformity cases, 622 cervical ossification of posterior longitudinal ligament (OPLL) cases, 249 thoracic-OPLL cases, 771 extramedullary spinal cord tumor cases, and 216 intramedullary spinal cord tumor (IMSCT) cases. We set a 70% amplitude reduction as the alarm threshold for transcranial electrical motor-evoked potentials and analyzed the outcomes of the interventions following monitoring alerts and postoperative neurological deficits. Results. The true positive, false positive, true negative, false negative, and rescue cases of IONM comprised 126, 234, 2362, 9, and 136 cases, respectively. Most alerts and interventions occurred during correction and release in deformity cases, posterior decompression and dekyphosis in OPLL cases, and tumor resection and surgery suspension with steroid injection in spinal cord tumor cases; however, individual interventions varied. The rescue rates (number of patients rescued with intervention after IONM alert/number of true positive cases plus rescue cases) for deformity, cervical-OPLL, thoracic--OPLL, extramedullary spinal cord tumor, and IMSCT cases were 61.4% (35/57), 82.1% (32/39), 40% (20/50), 52.5% (31/59), and 31.6% (18/57), respectively. Conclusion. Our prospective multicenter study identified potential neural damage in 9.5% of cases and 52% rescue cases using IONM. Although the rescue ratios for t-OPLL and IMSCT were relatively low, appropriate intervention immediately after an IONM alert may prevent neural damage even in high-risk spinal surgeries. Level of Evidence: 3
Ossification of the posterior longitudinal ligament of the spine (OPLL) is a common spinal disorder among the elderly that causes myelopathy and radiculopathy. To identify genetic factors for OPLL, we performed a genome-wide association study (GWAS) in ∼8,000 individuals followed by a replication study using an additional ∼7,000 individuals. We identified six susceptibility loci for OPLL: 20p12.3 (rs2423294: P = 1.10 × 10(-13)), 8q23.1 (rs374810: P = 1.88 × 10(-13)), 12p11.22 (rs1979679: P = 4.34 × 10(-12)), 12p12.2 (rs11045000: P = 2.95 × 10(-11)), 8q23.3 (rs13279799: P = 1.28 × 10(-10)) and 6p21.1 (rs927485: P = 9.40 × 10(-9)). Analyses of gene expression in and around the loci suggested that several genes are involved in OPLL etiology through membranous and/or endochondral ossification processes. Our results bring new insight to the etiology of OPLL.
In motor control, the general view is still that spinal interneurons mainly contribute to reflexes and automatic movements. The question raised here is whether spinal interneurons can mediate the cortical command for independent finger movements, like a precision grip between the thumb and index finger in the macaque monkey, or if this function depends exclusively on a direct corticomotoneuronal pathway. This study is a followup of a previous report (Sasaki et al. J Neurophysiol 92: 3142-3147, 2004) in which we trained macaque monkeys to pick a small piece of sweet potato from a cylinder by a precision grip between the index finger and thumb. We have now isolated one spinal interneuronal system, the C3-C4 propriospinal interneurons with projection to hand and arm motoneurons. In the previous study, the lateral corticospinal tract (CST) was interrupted in C4/C5 (input intact to the C3-C4 propriospinal interneurons), and in this study, the CST was interrupted in C2 (input abolished). The precision grip could be performed within the first 15 days after a CST lesion in C4/C5 but not in C2. We conclude that C3-C4 propriospinal interneurons also can carry the command for precision grip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.