Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg 2 in five broad bands (grizy), with a 5 σ point-source depth of r ≈ 26. The Deep layer covers a total of 26 deg 2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg 2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.
We report the discovery of a giant Lyα emitter (LAE) with a Spitzer/IRAC counterpart near the reionization epoch at z = 6.595. The giant LAE is found from the extensive 1 deg 2 Subaru narrow-band survey for z = 6.6 LAEs in the Subaru/XMM-Newton Deep Survey (SXDS) field, and subsequently identified by deep spectroscopy of Keck/DEIMOS and Magellan/IMACS. Among our 207 LAE candidates, this LAE is not only the brightest narrow-band object with L(Lyα) = 3.9±0.2×10 43 erg s −1 in our survey volume of 10 6 Mpc 3 , but also a spatially extended Lyα nebula with the largest isophotal area whose major axis is at least ≃ 3 ′′. This object is more likely to be a large Lyα nebula with a size of 17-kpc than to be a strongly-lensed galaxy by a foreground object. Our Keck spectrum with medium-high spectral and spatial resolutions suggests that the velocity width is v FWHM = 251±21 km s −1 , and that the line-center velocity changes by ≃ 60 km s −1 in a 10-kpc range. The stellar mass and star-formation rate are estimated to be 0.9 − 5.0 × 10 10 M ⊙ and > 34 M ⊙ yr −1 , respectively, from the combination of deep optical to infrared images of Subaru, UKIDSS-Ultra Deep Survey, and Spitzer/IRAC. Although the nature of this object is not yet clearly understood, this could be an important object for studying cooling clouds accreting onto a massive halo, or formingmassive galaxies with significant outflows contributing to cosmic reionization and metal enrichment of inter-galactic medium.
The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most important outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope, and it started in 2014 March. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 yr of observations (61.5 nights), and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i ∼ 26.4, ∼26.5, and ∼27.0 mag, respectively (5 σ for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0${^{\prime\prime}_{.}}$6 in the i band in the Wide layer. We show that we achieve 1%–2% point spread function (PSF) photometry (root mean square) both internally and externally (against Pan-STARRS1), and ∼10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.