Direct-drive implosion experiments on the GEKKO XII laser (9 kJ, 0.5 /xm, 2 ns) with deuterium and tritium (DT) exchanged plastic hollow shell targets demonstrated fuel areal densities (pR) of -0.1 g/cm 2 and fuel densities of -600 times liquid density at fuel temperatures of -0.3 keV. (The density and pR values refer only to DT and do not include carbons in the plastic targets.) These values are to be compared with thermonuclear ignition conditions, i.e., fuel densities of 500-1000 times liquid density, fuel areal densities greater than 0.3 g/cm 2 , and fuel temperatures greater than 5 keV. The irradiation nonuniformity in these experiments was significantly reduced to a level of <5°/o in root mean square by introducing random-phase plates. The target irregularity was controlled to a 1% level. The fuel pR was directly measured with the neutron activation of Si, which was originally compounded in the plastic targets. The fuel densities were estimated from the pR values using the mass conservation relation, where the ablated mass was separately measured using the time-dependent X-ray emission from multilayer targets. Although the observed densities were in agreement with one-dimensional calculation results with convergence ratios of 25-30, the observed neutron yields were significantly lower than those of the calculations. This suggests the implosion uniformity is not sufficient to create a hot spark in which most neutrons should be generated.
A series of experiments focused on high neutron yield has been performed with the Gekko-XII green laser system [Nucl. Fusion 27, 19 (1987)]. Deuterium–tritium (DT) neutron yield of 1013 and pellet gain of 0.2% have been achieved. Based on the experimental data from more than 70 irradiations, the scaling laws of the neutron yield and the related physical quantities have been studied. Comparison of the experimental neutron yield with that obtained by using a one-dimensional fluid code has led to the conclusion that most of the neutrons produced in the stagnation phase of the computation are not observed in the experiment because of fuel–pusher mixing, possibly induced by the Rayleigh–Taylor instability. The coupling efficiency and ablation pressure have been calculated using the ion temperature measured experimentally. A coupling efficiency of 5.5% and an ablation pressure of 50 Mbar have been obtained.
A metastable form of
LiFeO2
with α‐
NaFeO2
‐type structure (layered
LiFeO2
) was synthesized directly from α‐FeOOH or
FeCl3⋅6H2O
by hydrothermal reaction at 230°C using aqueous mixed‐alkaline solutions such as
normalLiOH⋅H2O‐KOH
or
normalLiOH⋅H2O‐normalNaOH
. Highly crystallized samples could be obtained by a one‐step process. The yield of the layered
LiFeO2
strongly depends on the composition of the starting mixture. Preliminary tests on electrochemical lithium deintercalation/intercalation show poor performance between 4.5 and 1.5 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.