The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
Clear-cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer and its molecular pathogenesis is incompletely understood. Here we report an integrated molecular study of ccRCC in which ≥100 ccRCC cases were fully analyzed by whole-genome and/or whole-exome and RNA sequencing as well as by array-based gene expression, copy number and/or methylation analyses. We identified a full spectrum of genetic lesions and analyzed gene expression and DNA methylation signatures and determined their impact on tumor behavior. Defective VHL-mediated proteolysis was a common feature of ccRCC, which was caused not only by VHL inactivation but also by new hotspot TCEB1 mutations, which abolished Elongin C-VHL binding, leading to HIF accumulation. Other newly identified pathways and components recurrently mutated in ccRCC included PI3K-AKT-mTOR signaling, the KEAP1-NRF2-CUL3 apparatus, DNA methylation, p53-related pathways and mRNA processing. This integrated molecular analysis unmasked new correlations between DNA methylation, gene mutation and/or gene expression and copy number profiles, enabling the stratification of clinical risks for patients with ccRCC.
Adiponectin is an anti-diabetic adipokine. Its receptors possess a seven-transmembrane topology with the amino terminus located intracellularly, which is the opposite of G-protein-coupled receptors. Here we provide evidence that adiponectin induces extracellular Ca(2+) influx by adiponectin receptor 1 (AdipoR1), which was necessary for subsequent activation of Ca(2+)/calmodulin-dependent protein kinase kinase beta (CaMKKbeta), AMPK and SIRT1, increased expression and decreased acetylation of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), and increased mitochondria in myocytes. Moreover, muscle-specific disruption of AdipoR1 suppressed the adiponectin-mediated increase in intracellular Ca(2+) concentration, and decreased the activation of CaMKK, AMPK and SIRT1 by adiponectin. Suppression of AdipoR1 also resulted in decreased PGC-1alpha expression and deacetylation, decreased mitochondrial content and enzymes, decreased oxidative type I myofibres, and decreased oxidative stress-detoxifying enzymes in skeletal muscle, which were associated with insulin resistance and decreased exercise endurance. Decreased levels of adiponectin and AdipoR1 in obesity may have causal roles in mitochondrial dysfunction and insulin resistance seen in diabetes.
BACKGROUND: We have often encountered difficulties in identifying small liver cancers during surgery. Fluorescent imaging using indocyanine green (ICG) has the potential to detect liver cancers through the visualization of the disordered biliary excretion of ICG in cancer tissues and noncancerous liver tissues compressed by the tumor. METHODS: ICG had been intravenously injected for a routine liver function test in 37 patients with hepatocellular carcinoma (HCC) and 12 patients with metastasis of colorectal carcinoma (CRC) before liver resection. Surgical specimens were investigated using a near‐infrared light camera system. Among the 49 subjects, the 26 patients examined during the latter period of the study (20 with HCC and 6 with metastasis) underwent ICG‐fluorescent imaging of the liver surfaces before resection. RESULTS: ICG‐fluorescent imaging identified all of the microscopically confirmed HCCs (n = 63) and CRC metastases (n = 28) in surgical specimens. Among the 63 HCCs, 8 tumors (13%, including 5 early HCCs) were not evident grossly unless observed by ICG‐fluorescent imaging. Five false‐positive nodules (4 large regenerative nodules and 1 bile duct proliferation) were identified among the fluorescent lesions. Well‐differentiated HCCs appeared as uniformly fluorescing lesions with higher lesion‐to‐liver contrast than that of moderately or poorly differentiated HCCs (162.6 [71.1‐218.2] per pixel vs 67.7 [‐6.3‐211.2] per pixel, P < .001), while CRC metastases were delineated as rim‐fluorescing lesions. Fluorescent microscopy confirmed that fluorescence originated in the cytoplasm and pseudoglands of HCC cells and in the noncancerous liver parenchyma surrounding metastases. ICG‐fluorescent imaging before resection identified 21 of the 41 HCCs (51%) and all of the 16 metastases that were examined. CONCLUSIONS: ICG‐fluorescent imaging enables the highly sensitive identification of small and grossly unidentifiable liver cancers in real time, enhancing the accuracy of liver resection and operative staging. Cancer 2009. © 2009 American Cancer Society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.