Extracellular levels of the excitatory neurotransmitter glutamate in the nervous system are maintained by transporters that actively remove glutamate from the extracellular space. Homozygous mice deficient in GLT-1, a widely distributed astrocytic glutamate transporter, show lethal spontaneous seizures and increased susceptibility to acute cortical injury. These effects can be attributed to elevated levels of residual glutamate in the brains of these mice.
To study the function of GLAST, a glutamate transporter highly expressed in the cerebellar Bergmann astrocytes, the mouse GLAST gene was inactivated. GLAST-deficient mice developed normally and could manage simple coordinated tasks, such as staying on a stationary or a slowly rotating rod, but failed more challenging task such as staying on a quickly rotating rod. Electrophysiological examination revealed that Purkinje cells in the mutant mice remained to be multiply innervated by climbing fibres even at the adult stage. We also found that oedema volumes in the mutant mice increased significantly after cerebellar injury. These results indicate that GLAST plays active roles both in the cerebellar climbing fibre synapse formation and in preventing excitotoxic cerebellar damage after acute brain injury.
Apoptotic cell death, characterized by chromatin condensation, nuclear fragmentation, cell membrane blebbing, and apoptotic body formation, is also accompanied by typical mitochondrial changes. The latter includes enhanced membrane permeability, fall in mitochondrial membrane potential (⌬ m ) and release of cytochrome c into the cytosol. Gelsolin, an actin regulatory protein, has been shown to inhibit apoptosis, but when cleaved by caspase-3, a fragment that is implicated as an effector of apoptosis is generated. The mechanism by which the full-length form of gelsolin inhibits apoptosis is unclear. Here we show that the overexpression of gelsolin inhibits the loss of ⌬ m and cytochrome c release from mitochondria resulting in the lack of activation of caspase-3, -8, and -9 in Jurkat cells treated with staurosporine, thapsigargin, and protoporphyrin IX. These effects were corroborated in vitro using recombinant gelsolin protein on isolated rat mitochondria stimulated with Ca 2؉ , atractyloside, or Bax. This protective function of gelsolin, which was not due to simple Ca 2؉ sequestration, was inhibited by polyphosphoinositide binding. In addition we confirmed that gelsolin, besides its localization in the cytosol, is also present in the mitochondrial fraction of cells. Gelsolin thus acts on an early step in the apoptotic signaling at the level of mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.