BackgroundDry eye has shown a marked increase due to visual display terminal (VDT) use. It remains unclear whether reduced blinking while focusing can have a direct deleterious impact on the lacrimal gland function. To address this issue that potentially affects the life quality, we conducted a large-scale epidemiological study of VDT users and an animal study.Methodology/Principal FindingsCross sectional survey carried out in Japan. A total of 1025 office workers who use VDT were enrolled. The association between VDT work duration and changes in tear film status, precorneal tear stability, lipid layer status and tear secretion were analyzed. For the animal model study, the rat VDT user model, placing rats onto a balance swing in combination with exposure to an evaporative environment was used to analyze lacrimal gland function. There was no positive relationship between VDT working duration and change in tear film stability and lipid layer status. The odds ratio for decrease in Schirmer score, index of tear secretion, were significantly increased with VDT working year (P = 0.012) and time (P = 0.005). The rat VDT user model, showed chronic reduction of tear secretion and was accompanied by an impairment of the lacrimal gland function and morphology. This dysfunction was recovered when rats were moved to resting conditions without the swing.Conclusions/SignificanceThese data suggest that lacrimal gland hypofunction is associated with VDT use and may be a critical mechanism for VDT-associated dry eye. We believe this to be the first mechanistic link to the pathogenesis of dry eye in office workers.
These results suggest a relationship between the accumulation of oxidative stress and the etiology of corneal epithelial alterations in blink-suppressed dry eye.
To clarify whether apoptosis is involved in doxorubicin (DXR)-induced testicular toxicity and to identify the target germ cell type, adult Sprague-Dawley rats were treated with a single intravenous dose of DXR (8 or 12 mg/kg) and euthanized at 3, 6, 12, 24, and 48 h subsequently. Histologically, germ cell degeneration was first found 6 h after dosing in meiotically dividing spermatocytes and early round spermatids of seminiferous tubules at stage 1, and subsequently observed in spermatogonia at stages I-VI showing ultrastructural characteristics of apoptosis. Coincident with the appearance of morphological changes, degenerating germ cells were shown to be undergoing apoptosis as revealed by in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). The frequency of TUNEL-labeled germ cells increased in a stage- and cell type-specific manner, the peak of frequency gradually progressing from stage I of seminiferous tubules to later stages with time after dosing, suggesting that the damaged germ cells, especially spermatogonia, gradually underwent the processes leading to apoptosis. DNA laddering on gel electrophoresis was apparent 24 and 48 h after dosing. The results demonstrate that apoptosis plays an important role in the induction of testicular toxicity caused by DXR with meiotically dividing spermatocytes and type A and intermediate spermatogonia as highly vulnerable target cells.
Retinal topographies of some cell types and distribution of the tapetum lucidum in the sheep's eye were investigated in this study. The tapetum was observed macroscopically in the fundus. The topographical distributions of retinal ganglion cells (RGCs), cones, and rods were simultaneously analyzed in retinal whole mounts stained with cresyl violet. Short-wavelength-sensitive (S) cones were immunocytochemically identified in retinal whole mounts. The tapetum was located dorsal to the optic disc, with the nasal part elongated horizontally and the temporal part expanded dorsally. RGCs were distributed densely in the area centralis, horizontal visual streak, and anakatabatic area. The highest density in the area centralis was approximately 18,000 RGCs/mm(2). Cones showed high density in the horizontal area crossing the optic disc and dorsotemporal area, whereas rods showed high density in the horizontal area, which was greater in height than the horizontal area of high cone density. S cones showed high density in the dorsotemporal retina. The rod/cone ratios were high horizontally in the dorsal retina to the optic disc, with a mean value of 11:1. The cone/RGC and rod/RGC ratios were lower in the horizontal and dorsotemporal retina, and the rod/cone/RGC ratio was lowest in the area centralis (9:1:1). The retinal topographies and distribution of the tapetum were specialized in the horizontal and dorsotemporal fundus. This suggests that sheep have better visual acuity in horizontal and anteroinferior visual fields and that this specialization is related to the visual ecology of sheep.
This rat dry eye model, established by repeated JB treatment in desiccating conditions, induced abnormal tear dynamics and superficial punctate keratopathy similar to that in humans. These findings suggest the potential clinical application of HBA in corneal surface epithelial disorders in patients with moderate to mild dry eye.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.