Various conventional reactions in polymer chemistry have been translated to the supramolecular domain, yet it has remained challenging to devise living supramolecular polymerization. To achieve this, self-organization occurring far from thermodynamic equilibrium--ubiquitously observed in nature--must take place. Prion infection is one example that can be observed in biological systems. Here, we present an 'artificial infection' process in which porphyrin-based monomers assemble into nanoparticles, and are then converted into nanofibres in the presence of an aliquot of the nanofibre, which acts as a 'pathogen'. We have investigated the assembly phenomenon using isodesmic and cooperative models and found that it occurs through a delicate interplay of these two aggregation pathways. Using this understanding of the mechanism taking place, we have designed a living supramolecular polymerization of the porphyrin-based monomers. Despite the fact that the polymerization is non-covalent, the reaction kinetics are analogous to that of conventional chain growth polymerization, and the supramolecular polymers were synthesized with controlled length and narrow polydispersity.
The mechanism of supramolecular polymerization has been elucidated for an archetype organogelator molecule composed of a perylene bisimide aromatic scaffold and two amide substituents. This molecule self-assembles into elongated one-dimensional nanofibers through a cooperative nucleation-growth process. Thermodynamic and kinetic analyses have been applied to discover conditions (temperature, solvent, concentration) where the spontaneous nucleation can be retarded by trapping of the monomers in an inactive conformation, leading to lag times up to more than 1 h. The unique kinetics in the nucleation process was confirmed as a thermal hysteresis in a cycle of assembly and disassembly processes. Under appropriate conditions within the hysteresis loop, addition of preassembled nanofiber seeds leads to seeded polymerization from the termini of the seeds in a living supramolecular polymerization process. These results demonstrate that seeded polymerizations are not limited to special situations where off-pathway aggregates sequester the monomeric reactant species but may be applicable to a large number of known and to be developed molecules from the large family of molecules that self-assemble into one-dimensional nanofibrous structures. Generalizing from the mechanistic insight into our seeded polymerization, we assert that a cooperative nucleation-growth supramolecular polymerization accompanied by thermal hysteresis can be controlled in a living manner.
Molecular self-assembly under kinetic control is expected to yield nanostructures that are inaccessible through the spontaneous thermodynamic process. Moreover, time-dependent evolution, which is reminiscent of biomolecular systems, may occur under such out-of-equilibrium conditions, allowing the synthesis of supramolecular assemblies with enhanced complexities. Here we report on the capacity of a metastable porphyrin supramolecular assembly to differentiate into nanofibre and nanosheet structures. Mechanistic studies of the relationship between the molecular design and pathway complexity in the self-assembly unveiled the energy landscape that governs the unique kinetic behaviour. Based on this understanding, we could control the differentiation phenomena and achieve both one- and two-dimensional living supramolecular polymerization using an identical monomer. Furthermore, we found that the obtained nanostructures are electronically distinct, which illustrates the pathway-dependent material properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.