Virus-like particles (VLPs) have received considerable attention due to their potential application in veterinary vaccines and, in particular, VLPs from rabbit haemorrhagic disease virus (RHDV) have successfully shown to be good platforms for inducing immune responses against an inserted foreign epitope in mice. The aim of this study was to assess the immunogenicity of chimeric RHDV-VLPs as vaccine vectors in pigs. For this purpose, we have generated chimeric VLPs containing a well-known T epitope of 3A protein of foot-and-mouth disease virus (FMDV). Firstly, RHDV-VLPs were able to activate immature porcine bone marrow-derived dendritic cells (poBMDCs) in vitro. Secondly, pigs were inoculated twice in a two-week interval with chimeric RHDV-VLPs at different doses intranasally or intramuscularly. One intramuscularly treated group was also inoculated with adjuvant Montanide™ ISA 206 at the same time. Specific IgG and IgA antibodies against RHDV-VLPs were induced and such levels were higher in the adjuvanted group compared with other groups. Interestingly, anti-RHDV-VLP IgA responses were higher in groups inoculated intramuscularly than those that received the VLPs intranasally. Two weeks after the last immunisation, specific IFN-γ-secreting cells against 3A epitope and against RHDV-VLPs were detected in PBMCs by ELISPOT. The adjuvanted group exhibited the highest IFN-γ-secreting cell numbers and lymphoproliferative specific T cell responses against 3A epitope and RHDV-VLP. This is the first immunological report on the potential use of chimeric RHDV-VLPs as antigen carriers in pigs.
Licensed seasonal influenza vaccines induce antibody (Ab) responses against influenza hemagglutinin (HA) that are limited in their ability to protect against different strains of influenza. Cytotoxic T lymphocytes recognizing the conserved internal nucleoprotein (NP) and matrix protein (M1) are capable of mediating a cross-subtype immune response against influenza. Modified vaccinia Ankara (MVA) virus encoding NP and M1(MVA-NP+M1) is designed to boost preexisting T-cell responses in adults in order to elicit a cross-protective immune response. We examined the coadministration of HA protein formulations and candidate MVA-NP+M1 influenza vaccines in murine, avian, and swine models. Ab responses postimmunization were measured by ELISA and pseudotype neutralization assays. Here, we demonstrate that MVA-NP+M1 can act as an adjuvant enhancing Ab responses to HA while simultaneously inducing potent T-cell responses to conserved internal Ags. We show that this regimen leads to the induction of cytophilic Ab isotypes that are capable of inhibiting hemagglutination and in the context of H5 exhibit cross-clade neutralization. The simultaneous induction of T cells and Ab responses has the potential to improve seasonal vaccine performance and could be employed in pandemic situations. Keywords: Adjuvants r Influenza vaccines r T cells r VaccinationAdditional supporting information may be found in the online version of this article at the publisher's web-site IntroductionFor the past 60 years, vaccination has and continues to be the main method to combat both seasonal and pandemic influenza. While Correspondence: Caitlin E. Mullarkey e-mail: caitlin.mullarkey@ndm.ox.ac.uk the strains included in seasonal influenza vaccines are updated regularly, in over half a century there have been few changes in the overall vaccination strategy. It is well established that licensed influenza vaccines work by eliciting neutralizing antibodies against the surface hemagglutinin (HA) protein, yet these antibodies confer little or no protection against distinct subtypes [1]. Subsequently, the efficacy of existing vaccines is highly dependent on correctly matching vaccine strains with circulating influenza C 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu Eur. J. Immunol. 2013. 43: 1940-1952 Clinical immunology 1941 strains [2]. Protection rates vary year to year and are estimated in healthy adults to be between 60 and 90% when the strains are correctly matched [3]. However, a recent meta-analysis assessing the efficacy and effectiveness of seasonal influenza vaccines suggests that protection rates may be overestimated [4]. Moreover, protection rates in the elderly are even lower despite the fact that this demographic accounts for 90% of influenza-related mortality and is a key target in vaccination campaigns [4]. There is a vital need to develop more effective influenza vaccines and to reevaluate influenza vaccination strategies especially with regard to pandemic preparedness. "Universal flu vaccines" that elicit cross-protect...
In the early 1980s, a highly contagious viral hemorrhagic fever in rabbits (Oryctolagus cuniculus) emerged, causing a very high rate of mortality in these animals. Since the initial occurrence of the rabbit hemorrhagic disease virus (RHDV), several hundred million rabbits have died after infection. The emergence of genetically-different virus variants (RHDV GI.1 and GI.2) indicated the very high variability of RHDV. Moreover, with these variants, the host range broadened to hare species (Lepus). The circulation of RHDV genotypes displays different virulences and a limited induction of cross-protective immunity. Interestingly, juvenile rabbits (<9 weeks of age) with an immature immune system display a general resistance to RHDV GI.1, and a limited resistance to RHDV GI.2 strains, whereas less than 3% of adult rabbits survive an infection by either RHDV GI.1. or GI.2. Several not-yet fully understood phenomena characterize the RHD. A very low infection dose followed by an extremely rapid viral replication could be simplified to the induction of a disseminated intravascular coagulopathy (DIC), a severe loss of lymphocytes—especially T-cells—and death within 36 to 72 h post infection. On the other hand, in animals surviving the infection or after vaccination, very high titers of RHDV-neutralizing antibodies were induced. Several studies have been conducted in order to deepen the knowledge about the virus’ genetics, epidemiology, RHDV-induced pathology, and the anti-RHDV immune responses of rabbits in order to understand the phenomenon of the juvenile resistance to this virus. Moreover, several approaches have been used to produce efficient vaccines in order to prevent an infection with RHDV. In this review, we discuss the current knowledge about anti-RHDV resistance and immunity, RHDV vaccination, and the further need to establish rationally-based RHDV vaccines.
Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. IMPORTANCEAlthough natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Surprisingly, we could not detect specific antibodies against hemagglutinin in any H3N8-infected pigs. Therefore, special attention should be focused toward viruses of the H3N8 subtype since they could behave as stealth viruses in pigs.T he most ubiquitous hemagglutinin (HA) subtype of influenza A virus (IAV) is the H3, as it can be found in a variety of organisms, including humans, pigs, horses, dogs, cats, seals, poultry, and wild aquatic birds. Among all H3 subtypes, the H3N8 has turned out particularly interesting since it has established lineages not only in wild aquatic birds but also in mammalian species such as horses and dogs. At present, H3N8 is the only IAV subtype circulating in equine and canine species (1, 2). However, until now this subtype is not circulating in pigs and humans (1).Recently, equine H3N8 (clade II) strains have been isolated from pigs in China (3), but except for this publication no more data about transmission of equine IAV to pigs has been reported. Equine IAV has not been reported to cause disease in humans; however, a st...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.