Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks) on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002). Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002), served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4+ and CD8+ cellular activation (CD38 and HLA-DR) together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4+ T cells and B cells with reduction of CD8+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4+ and CD8+ T cells were accompanied by increases of CD4+ and CD8+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite, absent or partial in the OBS population. These findings support the use of Tat immunization to intensify HAART efficacy and to restore immune homeostasis.Trial registrationClinicalTrials.gov NCT00751595
The native HIV-1 Tat protein was chosen as vaccine candidate for phase I clinical trials in both uninfected (ClinicalTrials.gov identifier: NCT00529698) and infected volunteers (ClinicalTrials.gov identifier: NCT00505401). The rationale was based on the role of Tat in the natural infection and AIDS pathogenesis, on the association of Tat-specific immune responses with the asymptomatic stage and slow-progression rate as well as on its sequence conservation among HIV clades (http://www.hiv1tat-vaccines.info/). The parallel conduction in the same clinical centers of randomized, double blind, placebo-controlled phase I studies both in healthy, immunologically competent adults and in HIV-infected, clinically asymptomatic, individuals represents a unique occasion to compare the vaccine-induced immune response in both the preventive and therapeutic setting. In both studies, the same lot of the native Tat protein was administered 5 times, every four weeks, subcute (SC) with alum adjuvant or intradermic (ID), in the absence of adjuvant, at 7.5 microg, 15 microg or 30 microg doses, respectively. The primary and secondary endpoints of these studies were the safety and immunogenicity of the vaccine candidate, respectively. The study lasted 52 weeks and monitoring was conducted for on additional 3 years. The results of both studies indicated that the Tat vaccine is safe and well tolerated both locally and systemically and it is highly immunogenic at all the dosages and by both routes of administration. Vaccination with Tat induced a balanced immune response in uninfected and infected individuals. In particular, therapeutic immunization induced functional antibodies and partially reverted the marked Th1 polarization of anti-Tat immunity seen in natural infection, and elicited a more balanced Th1/Th2 immune response. Further, the number of CD4 T cells correlated positively with anti-Tat antibody titers. Based on these results, a phase II study is ongoing in infected drug-treated individuals (http://www.hiv1tat-vaccines.info/).
Introduction: Tat, a key HIV virulence protein, has been targeted for the development of a therapeutic vaccine aimed at cART intensification. Results from phase II clinical trials in Italy ( ISS T-002 ) and South Africa ( ISS T-003 ) indicated that Tat vaccination promotes increases of CD4 + T-cells and return to immune homeostasis while reducing the virus reservoir in chronically cART-treated patients. Here we present data of 92 vaccinees (59% of total vaccinees) enrolled in the ISS T-002 8-year extended follow-up study (ISS T-002 EF-UP, ClinicalTrials.gov NCT02118168 ). Results: Anti-Tat antibodies (Abs) induced upon vaccination persisted for the entire follow-up in 34/92 (37%) vaccinees, particularly when all 3 Ab classes (A/G/M) were present (66% of vaccinees), as most frequently observed with Tat 30 μg regimens. CD4 + T cells increased above study-entry levels reaching a stable plateau at year 5 post-vaccination, with the highest increase (165 cells/μL) in the Tat 30 μg, 3 × regimen. CD4 + T-cell increase occurred even in subjects with CD4 + nadir ≤ 250 cells/ u L and in poor immunological responders and was associated with a concomitant increase of the CD4 + /CD8 + T-cell ratio, a prognostic marker of morbidity/mortality inversely related to HIV reservoir size. Proviral DNA load decreased over time, with a half-life of 2 years and an estimated 90% reduction at year 8 in the Tat 30 μg, 3 × group. In multivariate analysis the kinetic and amplitude of both CD4 + T-cell increase and proviral DNA reduction were fastest and highest in subjects with all 3 anti-Tat Ab classes and in the 30 μg, 3 × group, irrespective of drug regimens (NNRTI/NRTI vs. PI). HIV proviral DNA changes from baseline were inversely related to CD4 + /CD8 + T-cell ratio and CD4 + T-cell changes, and directly related to the changes of CD8 + T cells. Further, HIV DNA decay kinetics were inversely related to the frequency and levels of intermittent viremia. Finally, Tat vaccination was similarly effective irrespective of the individual immunological status or HIV reservoir size at study entry. Conclusions: Tat immunization induces progressive immune restoration and reduction of virus reservoirs above levels reached with long-term cART, and may represent an optimal vaccine candidate for cART intensification toward HIV reservoirs depletion, functional cure, and eradication strategies.
Previous work has shown that the Tat protein of Human Immunodeficiency Virus (HIV)-1 is released by acutely infected cells in a biologically active form and enters dendritic cells upon the binding of its arginine-glycine-aspartic acid (RGD) domain to the α5β1, αvβ3, and αvβ5 integrins. The up-regulation/activation of these integrins occurs in endothelial cells exposed to inflammatory cytokines that are increased in HIV-infected individuals, leading to endothelial cell dysfunction. Here, we show that inflammatory cytokine-activated endothelial cells selectively bind and rapidly take up nano-micromolar concentrations of Tat, as determined by flow cytometry. Protein oxidation and low temperatures reduce Tat entry, suggesting a conformation- and energy-dependent process. Consistently, Tat entry is competed out by RGD-Tat peptides or integrin natural ligands, and it is blocked by anti-α5β1, -αvβ3, and -αvβ5 antibodies. Moreover, modelling–docking calculations identify a low-energy Tat-αvβ3 integrin complex in which Tat makes contacts with both the αv and β3 chains. It is noteworthy that internalized Tat induces HIV replication in inflammatory cytokine-treated, but not untreated, endothelial cells. Thus, endothelial cell dysfunction driven by inflammatory cytokines renders the vascular system a target of Tat, which makes endothelial cells permissive to HIV replication, adding a further layer of complexity to functionally cure and/or eradicate HIV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.