SUMMARY
Sepsis, a leading cause of morbidity and mortality throughout the world, is a clinical syndrome with signs and symptoms relating to an infectious event and the consequent important inflammatory response. From a clinical point of view, sepsis is a continuous process ranging from systemic inflammatory response syndrome (SIRS) to multiple-organ-dysfunction syndrome (MODS). Blood cultures are the current “gold standard” for diagnosis, and they are based on the detection of viable microorganisms present in blood. However, on some occasions, blood cultures have intrinsic limitations in terms of sensitivity and rapidity, and it is not expected that these drawbacks will be overcome by significant improvements in the near future. For these principal reasons, other approaches are therefore needed in association with blood culture to improve the overall diagnostic yield for septic patients. These considerations have represented the rationale for the development of highly sensitive and fast laboratory methods. This review addresses non-culture-based techniques for the diagnosis of sepsis, including molecular and other non-culture-based methods. In particular, the potential clinical role for the sensitive and rapid detection of bacterial and fungal DNA in the development of new diagnostic algorithms is discussed.
The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2-O or 6-O sulfate groups than on N-sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.
Severe COVID-19 is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members, denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against SARS-CoV-2. In contrast, compared to subjects with other infectious or non-infectious lung pathologies, IFNs are over-represented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.