Mastocytosis is a hematologic neoplasm characterized by expansion and focal accumulation of neoplastic mast cells (MC) in diverse organs, including the skin, bone marrow (BM), spleen, liver, and gastrointestinal tract. The World Health Organization classification divides the disease into prognostically distinct variants of cutaneous mastocytosis (CM) and systemic mastocytosis (SM). Although this classification remains valid, recent developments in the field and the advent of new diagnostic and prognostic parameters created a need to update and refine definitions and diagnostic criteria in MC neoplasms. In addition, MC activation syndromes (MCAS) and genetic features predisposing to SM and MCAS have been identified. To discuss these developments and refinements in the classification, we organized a Working Conference comprised of experts from Europe and the United States in August 2020. This article reports on outcomes from this conference. Of particular note, we propose adjustments in the classification of CM and SM, refinements in diagnostic criteria of SM variants, including smoldering SM and BM mastocytosis (BMM), and updated criteria for MCAS and other conditions involving MC. CD30 expression in MC now qualifies as a minor SM criterion, and BMM is now defined by SM criteria, absence of skin lesions and absence of B-and C-findings. A basal serum tryptase level exceeding 20 ng/mL remains a minor SM criterion, with recognition that hereditary alpha-tryptasemia and various myeloid neoplasms may also cause elevations in tryptase. Our updated proposal will support diagnostic evaluations and prognostication in daily practice and the conduct of clinical trials in MC disorders.
Mast cell activation (MCA) accompanies diverse physiologic and pathologic processes and is one of the more frequently encountered conditions in medicine. MCA-related symptoms are usually mild and often transient. In such cases, histamine receptor blockers and other mediator-targeting drugs can usually control MCA. In severe cases, a MCA syndrome (MCAS) may be diagnosed. However, overt MCAS is an unusual condition, and many patients referred because of suspected MCAS are diagnosed with other diseases (autoimmune, neoplastic, infectious) unrelated to MCA or suffer from MCA-related (e.g., allergic) disorders and/or co-morbidities without fulfilling criteria of an overt MCAS. These considerations are important as more and more patients are informed they may have MCA or even MCAS without completing a thorough medical evaluation. In fact, in several instances, symptoms are misinterpreted as MCA/MCAS, and other, clinically relevant conditions are not thoroughly pursued. The number of such referrals is increasing. In order to avoid such unnecessary referrals and to prevent misdiagnoses, we here propose a diagnostic algorithm through which a clinically relevant (systemic) MCA can be suspected and MCAS can subsequently be documented or excluded. In addition, the algorithm proposed should help guide the investigating care providers to consider the two principle diagnoses that may underlie MCAS, namely severe allergy and systemic mastocytosis accompanied by severe MCA. Although validation is required, we anticipate that this algorithm will facilitate the management of patients with suspected MCAS.
A novel strain of human coronaviruses, named by the International Committee on Taxonomy of Viruses (ICTV) 1 as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged and
The recent COVID-19 pandemic has had a significant impact on our lives and has rapidly expanded to reach more than 4 million cases worldwide by May 2020. These cases are characterized by extreme variability, from a mild or asymptomatic form lasting for a few days up to severe forms of interstitial pneumonia that may require ventilatory therapy and can lead to patient death. Several hypotheses have been drawn up to understand the role of the interaction between the infectious agent and the immune system in the development of the disease and the most severe forms; the role of the cytokine storm seems important. Innate immunity, as one of the first elements of guest interaction with different infectious agents, could play an important role in the development of the cytokine storm and be responsible for boosting more severe forms. Therefore, it seems important to study also this important arm of the immune system to adequately understand the pathogenesis of the disease. Research on this topic is also needed to develop therapeutic strategies for treatment of this disease.
The origin and functions of mast cells (MCs) have been debated since their description by Paul Ehrlich in 1879. MCs have long been considered 'reactive bystanders' and 'amplifiers' in inflammatory processes, allergic reactions, and host responses to infectious diseases. However, knowledge about the origin, phenotypes and functions of MCs has increased substantially over the past 50 years. MCs are now known to be derived from multipotent hematopoietic progenitors, which, through a process of differentiation and maturation, form a unique hematopoietic lineage residing in multiple organs. In particular, MCs are distinguishable from basophils and other hematopoietic cells by their unique phenotype, origin(s), and spectrum of functions, both in innate and adaptive immune responses and in other settings. The concept of a unique MC lineage is further supported by the development of a distinct group of neoplasms, collectively referred to as mastocytosis, in which MC precursors expand as clonal cells. The clinical consequences of the expansion and/or activation of MCs are best established in mastocytosis and in allergic inflammation. However, MCs have also been implicated as important participants in a number of additional pathologic conditions and physiological processes. In this article, we review concepts regarding MC development, factors controlling MC expansion and activation, and some of the fundamental roles MCs may play in both health and disease. We also discuss new concepts for suppressing MC expansion and/or activation using molecularly-targeted drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.