Background— The mechanisms of thrombosis on plaque erosion are poorly understood. We examined the potential role of endothelial apoptosis in endothelial erosion and vessel thrombosis. Methods and Results— Segments of New Zealand White rabbit femoral arteries were temporarily isolated in vivo. One artery was incubated with staurosporin for 30 minutes, whereas the contralateral artery was incubated with saline and served as control. Three days later, thrombosis was evaluated angiographically and histologically. TUNEL score in the endothelial layer was significantly increased in staurosporin-treated arteries compared with controls (2.43±0.30 versus 0.93±0.44, respectively; P =0.001). Large areas of endothelial denudation were detectable in staurosporin-treated vessels, whereas endothelium integrity was almost preserved in the saline group. Vessel thrombosis occurred in 58% of staurosporin-treated arteries (7 of 12) but in only 8% of saline-treated segments ( P <0.01). Immunoreactivities for tissue factor, platelets, and fibrin were detectable within the thrombus. Addition of ZVAD-fmk (0.1 mmol/L) significantly reduced the occurrence of thrombosis (1 of 7 arteries or 14%, P =0.04). These results were confirmed in balloon-injured atheromatous arteries. Conclusions— In vivo induction of endothelial apoptosis leads to both vessel thrombosis and endothelial denudation. Endothelial apoptosis may be a critical step in the transition from a stable endothelialized plaque to plaque erosion and thrombosis.
BackgroundThe microenvironment plays a major role in the onset and progression of metastasis. Epithelial ovarian cancer (EOC) tends to metastasize to the peritoneal cavity where interactions within the microenvironment might lead to chemoresistance. Mesothelial cells are important actors of the peritoneal homeostasis; we determined their role in the acquisition of chemoresistance of ovarian tumours.Methodology/Principal FindingsWe isolated an original type of stromal cells, referred to as “Hospicells” from ascitis of patients with ovarian carcinosis using limiting dilution. We studied their ability to confer chemoresistance through heterocellular interactions. These stromal cells displayed a new phenotype with positive immunostaining for CD9, CD10, CD29, CD146, CD166 and Multi drug resistance protein. They preferentially interacted with epithelial ovarian cancer cells. This interaction induced chemoresistance to platin and taxans with the implication of multi-drug resistance proteins. This contact enabled EOC cells to capture patches of the Hospicells membrane through oncologic trogocytosis, therefore acquiring their functional P-gp proteins and thus developing chemoresistance. Presence of Hospicells on ovarian cancer tissue micro-array from patients with neo-adjuvant chemotherapy was also significantly associated to chemoresistance.Conclusions/SignificanceThis is the first report of trogocytosis occurring between a cancer cell and an original type of stromal cell. This interaction induced autonomous acquisition of chemoresistance. The presence of stromal cells within patient's tumour might be predictive of chemoresistance. The specific interaction between cancer cells and stromal cells might be targeted during chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.