We are performing whole genome sequencing (WGS) of families with Autism Spectrum Disorder (ASD) to build a resource, named MSSNG, to enable the sub-categorization of phenotypes and underlying genetic factors involved. Here, we report WGS of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible in a cloud platform, and through an internet portal with controlled access. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertion/deletions (indels) or copy number variations (CNVs) per ASD subject. We identified 18 new candidate ASD-risk genes such as MED13 and PHF3, and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability (p=6×10−4). In 294/2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried CNV/chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD.
Although mice lacking rod and cone photoreceptors are blind, they retain many eye-mediated responses to light, possibly through photosensitive retinal ganglion cells. These cells express melanopsin, a photopigment that confers this photosensitivity. Mice lacking melanopsin still retain nonvisual photoreception, suggesting that rods and cones could operate in this capacity. We observed that mice with both outer-retinal degeneration and a deficiency in melanopsin exhibited complete loss of photoentrainment of the circadian oscillator, pupillary light responses, photic suppression of arylalkylamine-N-acetyltransferase transcript, and acute suppression of locomotor activity by light. This indicates the importance of both nonvisual and classical visual photoreceptor systems for nonvisual photic responses in mammals.
The existence of tumor-suppressor genes was originally demonstrated by functional complementation through whole-cell and microcell fusion. Transfer of chromosome 11 into a human non-small-cell lung cancer (NSCLC) cell line, A549, suppresses tumorigenicity. Loss of heterozygosity (LOH) on the long arm of chromosome 11 has been reported in NSCLC and other cancers. Several independent studies indicate that multiple tumor-suppressor genes are found in this region, including the gene PPP2R1B at 11q23-24 (ref. 7). Linkage studies of NSCLC are precluded because no hereditary forms are known. We previously identified a region of 700 kb on 11q23.2 that completely suppresses tumorigenicity of A549 human NSCLC cells. Most of this tumor-suppressor activity localizes to a 100-kb segment by functional complementation. Here we report that this region contains a single confirmed gene, TSLC1, whose expression is reduced or absent in A549 and several other NSCLC, hepatocellular carcinoma (HCC) and pancreatic cancer (PaC) cell lines. TSLC1 expression or suppression is correlated with promoter methylation state in these cell lines. Restoration of TSLC1 expression to normal or higher levels suppresses tumor formation by A549 cells in nude mice. Only 2 inactivating mutations of TSLC1 were discovered in 161 tumors and tumor cell lines, both among the 20 primary tumors with LOH for 11q23.2. Promoter methylation was observed in 15 of the other 18 primary NSCLC, HCC and PaC tumors with LOH for 11q23.2. Thus, attenuation of TSLC1 expression occurred in 85% of primary tumors with LOH. Hypermethylation of the TSLC1 promoter would seem to represent the 'second hit' in NSCLC with LOH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.