CitationArranged sevenfold: structural insights into the C-terminal oligomerization domain of human C4b-binding protein. HighlightsCore crystal structure of a major modulator of complement system Human C4BP core complex reveals heptameric ring structure 7 disulfide bonds and 3 layers of electrostatic interactions provide high stability Molecular modeling provides insights into the structure of heterooligomeric isoforms Running titleCrystal structure of human C4BP core complex -2 - AbstractThe complement system as major part of innate immunity is the first line of defense against invading microorganisms. Orchestrated by more than 60 proteins, its major task is to discriminate between host cells and pathogens and to initiate immune response. Additional recognition of necrotic or apoptotic cells demand a fine-tune regulation of this powerful system. C4b-binding protein (C4BP) is the major inhibitor of the classical complement and lectin pathway. The crystal structure of the human C4BP oligomerization domain in its 7 isoform and molecular simulations provide first structural insights of C4BP oligomerization. The heptameric core structure is stabilized by intermolecular disulfide bonds.In addition, thermal shift assays indicate that layers of electrostatic interactions mainly contribute to the extraordinary thermodynamic stability of the complex. These findings make C4BP a promising scaffold for multivalent ligand display with applications in immunology and biological chemistry.
BackgroundVirus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery.ResultsThe effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins.ConclusionsThese findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element for chimeric HBcAg-VLPs to increase their suitability.Electronic supplementary materialThe online version of this article (10.1186/s12951-018-0363-0) contains supplementary material, which is available to authorized users.
Cystine-knot peptides sharing a common fold but displaying a notably large diversity within the primary structure of flanking loops have shown great potential as scaffolds for the development of therapeutic and diagnostic agents. In this study, we demonstrated that the cystine-knot peptide MCoTI-II, a trypsin inhibitor from Momordica cochinchinensis, can be engineered to bind to cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, that has emerged as a target for the treatment of metastatic melanoma. Directed evolution was used to convert a cystine-knot trypsin inhibitor into a CTLA-4 binder by screening a library of variants using yeast surface display. A set of cystine-knot peptides possessing dissociation constants in the micromolar range was obtained; the most potent variant was synthesized chemically. Successive conjugation with neutravidin, fusion to antibody Fc domain or the oligomerization domain of C4b binding protein resulted in oligovalent variants that possessed enhanced (up to 400-fold) dissociation constants in the nanomolar range. Our data indicate that display of multiple knottin peptides on an oligomeric scaffold protein is a valid strategy to improve their functional affinity with ramifications for applications in diagnostics and therapy.
The extra domain B splice variant (EDB) of human fibronectin selectively expressed in the tumor vasculature is an attractive target for cancer imaging and therapy. Here, we describe the generation and characterization of EDB-specific optical imaging probes. By screening combinatorial cystine-knot miniprotein libraries with phage display technology we discover exquisitely EDB-specific ligands that share a distinctive motif. Probes with a binding constant in the picomolar range are generated by chemical oligomerization of selected ligands and fluorophore conjugation. We show by fluorescence imaging that the probes stain EDB in tissue sections derived from human U-87 MG glioblastoma xenografts in mice. Moreover, we demonstrate selective accumulation and retention of intravenously administered probes in the tumor tissue of mice with U-87 MG glioblastoma xenografts by in vivo and ex vivo fluorescence imaging. These data warrants further pursuit of the selected cystine-knot miniproteins for in vivo imaging applications.
Here we describe the facile generation of tetravalent peptide conjugates via a copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) using a cyclic peptide template as a versatile conjugation scaffold. This stable and rigid framework is a conformationally constrained cyclic beta-sheet decorated with spatially defined alkyne moieties that serve as selectively addressable coupling sites. The proposed method allows for the effective coupling of unprotected peptide monomers in water at room temperature within comparatively short reaction times. The resulting conjugates display the ligands in an oriented manner, thus allowing for multivalent interactions with given target molecules, which may contribute to enhanced affinity and specificity. In addition, the selected scaffold offers an orthogonal coupling site for the incorporation of fluorescent labels or radioligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.