Neurodegeneration is the main cause for permanent disability in multiple sclerosis. The effect of current immunomodulatory treatments on neurodegeneration is insufficient. Therefore, direct neuroprotection and myeloprotection remain an important therapeutic goal. Targeting acid-sensing ion channel 1 (encoded by the ASIC1 gene), which contributes to the excessive intracellular accumulation of injurious Na(+) and Ca(2+) and is over-expressed in acute multiple sclerosis lesions, appears to be a viable strategy to limit cellular injury that is the substrate of neurodegeneration. While blockade of ASIC1 through amiloride, a potassium sparing diuretic that is currently licensed for hypertension and congestive cardiac failure, showed neuroprotective and myeloprotective effects in experimental models of multiple sclerosis, this strategy remains untested in patients with multiple sclerosis. In this translational study, we tested the neuroprotective effects of amiloride in patients with primary progressive multiple sclerosis. First, we assessed ASIC1 expression in chronic brain lesions from post-mortem of patients with progressive multiple sclerosis to identify the target process for neuroprotection. Second, we tested the neuroprotective effect of amiloride in a cohort of 14 patients with primary progressive multiple sclerosis using magnetic resonance imaging markers of neurodegeneration as outcome measures of neuroprotection. Patients with primary progressive multiple sclerosis underwent serial magnetic resonance imaging scans before (pretreatment phase) and during (treatment phase) amiloride treatment for a period of 3 years. Whole-brain volume and tissue integrity were measured with high-resolution T(1)-weighted and diffusion tensor imaging. In chronic brain lesions of patients with progressive multiple sclerosis, we demonstrate an increased expression of ASIC1 in axons and an association with injury markers within chronic inactive lesions. In patients with primary progressive multiple sclerosis, we observed a significant reduction in normalized annual rate of whole-brain volume during the treatment phase, compared with the pretreatment phase (P = 0.018, corrected). Consistent with this reduction, we showed that changes in diffusion indices of tissue damage within major clinically relevant white matter (corpus callosum and corticospinal tract) and deep grey matter (thalamus) structures were significantly reduced during the treatment phase (P = 0.02, corrected). Our results extend evidence of the contribution of ASIC1 to neurodegeneration in multiple sclerosis and suggest that amiloride may exert neuroprotective effects in patients with progressive multiple sclerosis. This pilot study is the first translational study on neuroprotection targeting ASIC1 and supports future randomized controlled trials measuring neuroprotection with amiloride in patients with multiple sclerosis.
The UK Multiple Sclerosis Register (UKMSR) is a large cohort study designed to capture 'real world' information about living with multiple sclerosis (MS) in the UK from diverse sources. The primary source of data is directly from people with Multiple Sclerosis (pwMS) captured by longitudinal questionnaires via an internet portal. This population's diagnosis of MS is self-reported and therefore unverified. The second data source is clinical data which is captured from MS Specialist Treatment centres across the UK. This includes a clinically confirmed diagnosis of MS (by Macdonald criteria) for consented patients. A proportion of the internet population have also been consented at their hospital making comparisons possible. This dataset is called the 'linked dataset'. The purpose of this paper is to examine the characteristics of the three datasets: the self-reported portal data, clinical data and linked data, in order to assess the validity of the self-reported portal data. The internet (n = 11,021) and clinical (n = 3,003) populations were studied for key shared characteristics. We found them to be closely matched for mean age at diagnosis (clinical = 37.39, portal = 39.28) and gender ratio (female %, portal = 73.1, clinical = 75.2). The Two Sample Kolmogorov-Smirnov test was for the continuous variables to examine is they were drawn from the same distribution. The null hypothesis was rejected only for age at diagnosis (D = 0.078, p < 0.01). The populations therefore, were drawn from different distributions, as there are more patients with relapsing disease in the clinical cohort. In all other analyses performed, the populations were shown to be drawn from the same distribution. Our analysis has shown that the UKMSR portal population is highly analogous to the entirely clinical (validated) population. This supports the validity of the self-reported diagnosis and therefore that the portal population can be utilised as a viable and valid cohort of people with Multiple Sclerosis for study.
Multiple Sclerosis (MS) is a common cause of neurological disability among young adults and has a high economic burden. Currently there are 18 disease modifying agents for relapsing MS, which were tested in clinical trials versus placebo or an active comparator in a pairwise manner. However, there is currently no consensus on the fundamental principles of treatment approach and initial therapy selection. These factors result in variable use of disease modifying therapies.Here we describe the study protocol for Determining the Effectiveness of earLy Intensive Versus Escalation approaches for the Treatment of Relapsing-remitting Multiple Sclerosis (DELIVER-MS). The main objective of the study is to determine whether an early highly effective treatment approach, defined as use of one of four monoclonal antibodies as initial therapy, is more effective than an escalation treatment approach (any other approved medication as initial therapy with subsequent escalation to higher efficacy treatments guided by radiological and clinical evaluation). The primary endpoint of the study is reduction in normalized brain volume loss from baseline visit to month 36 visit using MRI. Brain volume loss was selected as the best short-term predictor of long-term clinical disability. A total of 400 participants will be randomized 1:1 using minimization to account for age and sex by site, and 400 will be enrolled into a parallel observational cohort. The study results will help guide overall treatment philosophy and will have important implications for patient choice, clinical practice, and treatment access.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.