The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on ‘Black holes, Gravitational waves and Fundamental Physics’.
Clinical observations have suggested that the neuropsychological profile of early and late onset forms of Alzheimer's disease (EOAD and LOAD) differ in that neocortical functions are more affected in the former and learning in the latter, suggesting that they might be different diseases. The aim of this study is to assess the brain structural basis of these observations, and test whether neocortical areas are more heavily affected in EOAD and medial temporal areas in LOAD. Fifteen patients with EOAD and 15 with LOAD (onset before and after age 65; Mini Mental State Examination 19.8, SD 4.0 and 20.7, SD 4.2) were assessed with a neuropsychological battery and high-resolution MRI together with 1:1 age- and sex-matched controls. Cortical atrophy was assessed with cortical pattern matching, and hippocampal atrophy with region-of-interest-based analysis. EOAD patients performed more poorly than LOAD on visuospatial, frontal-executive and learning tests. EOAD patients had the largest atrophy in the occipital [25% grey matter (GM) loss in the left and 24% in the right hemisphere] and parietal lobes (23% loss on both sides), while LOAD patients were remarkably atrophic in the hippocampus (21 and 22% loss). Hippocampal GM loss of EOAD (9 and 16% to the left and right) and occipital (12 and 14%) and parietal (13 and 12%) loss of LOAD patients were less marked. In EOAD, GM loss of 25% or more was mapped to large neocortical areas and affected all lobes, with relative sparing of primary sensory, motor, and visual cortex, and anterior cingulate and orbital cortex. In LOAD, GM loss was diffusely milder (below 15%); losses of 15-20% were confined to temporoparietal and retrosplenial cortex, and reached 25% in restricted areas of the medial temporal lobe and right superior temporal gyrus. These findings indicate that EOAD and LOAD differ in their typical topographic patterns of brain atrophy, suggesting different predisposing or aetiological factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.