This work reports on the first attempt to prepare bioderived polymer films by blending polylactic acid (PLA) and poly(dodecylene furanoate) (PDoF). This blend, containing 10 wt% PDoF, was filled with reduced graphene oxide (rGO) in variable weight fractions (from 0.25 to 2 phr), and the resulting nanocomposites were characterized to assess their microstructural, thermal, mechanical, optical, electrical, and gas barrier properties. The PLA/PDoF blend resulted as immiscible, and the addition of rGO, which preferentially segregated in the PDoF phase, resulted in smaller (from 2.6 to 1.6 µm) and more irregularly shaped PDoF domains and in a higher PLA/PDoF interfacial interaction, which suggests the role of rGO as a blend compatibilizer. rGO also increased PLA crystallinity, and this phenomenon was more pronounced when PDoF was also present, thus evidencing a synergism between PDoF and rGO in accelerating the crystallization kinetics of PLA. Dynamic mechanical thermal analysis (DMTA) showed that the glass transition of PDoF, observed at approx. 5 °C, shifted to a higher temperature upon rGO addition. The addition of 10 wt% PDoF in PLA increased the strain at break from 5.3% to 13.0% (+145%), and the addition of 0.25 phr of rGO increased the tensile strength from 35.6 MPa to 40.2 MPa (+13%), without significantly modifying the strain at break. Moreover, rGO decreased the electrical resistivity of the films, and the relatively high percolation threshold (between 1 and 2 phr) was probably linked to the low aspect ratio of rGO nanosheets and their preferential distribution inside PDoF domains. PDoF and rGO also modified the optical transparency of PLA, resulting in a continuous decrease in transmittance in the visible/NIR range. Finally, rGO strongly modified the gas barrier properties, with a remarkable decrease in diffusivity and permeability to gases such as O2, N2, and CO2. Overall, the presented results highlighted the positive and sometimes synergistic role of PDoF and rGO in tuning the thermomechanical and functional properties of PLA, with simultaneous enhancement of ductility, crystallization kinetics, and gas barrier performance, and these novel polymer nanocomposites could thus be promising for packaging applications.
Studying atmospheric neutrino oscillations in the few-GeV range with a multimegaton detector promises to determine the neutrino mass hierarchy. This is the main science goal pursued by the future KM3NeT/ORCA water Cherenkov detector in the Mediterranean Sea. In this paper, the processes that limit the obtainable resolution in both energy and direction in charged-current neutrino events in the ORCA detector are investigated. These processes include the composition of the hadronic fragmentation products, the subsequent particle propagation and the photon-sampling fraction of the detector. GEANT simulations of neutrino interactions in seawater produced by GENIE are used to study the effects in the 1-20 GeV range. It is found that fluctuations in the hadronic cascade in conjunction with the variation of the inelasticity y are most detrimental to the resolutions. The effect of limited photon sampling in the detector is of significantly less importance. These results will therefore also be applicable to similar detectors/media, such as those in ice.
Home Search Collections Journals About Contact us My IOPscience You may also be interested in: The KM3NeT neutrino telescope R Coniglione and KM3NeT collaboration KM3NeT: designing a cubic-kilometre scale neutrino telescope for the mediterranean
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.