Key Points• MDS is characterized by mutations in .40 genes, a complex structure of gene-gene interactions and extensive subclonal diversification.• The total number of oncogenic mutations and early detection of subclonal mutations are significant prognostic variables in MDS.Myelodysplastic syndromes (MDS) are a heterogeneous group of chronic hematological malignancies characterized by dysplasia, ineffective hematopoiesis and a variable risk of progression to acute myeloid leukemia. Sequencing of MDS genomes has identified mutations in genes implicated in RNA splicing, DNA modification, chromatin regulation, and cell signaling. We sequenced 111 genes across 738 patients with MDS or closely related neoplasms (including chronic myelomonocytic leukemia and MDS-myeloproliferative neoplasms) to explore the role of acquired mutations in MDS biology and clinical phenotype. Seventy-eight percent of patients had 1 or more oncogenic mutations. We identify complex patterns of pairwise association between genes, indicative of epistatic interactions involving components of the spliceosome machinery and epigenetic modifiers. Coupled with inferences on subclonal mutations, these data suggest a hypothesis of genetic "predestination," in which early driver mutations, typically affecting genes involved in RNA splicing, dictate future trajectories of disease evolution with distinct clinical phenotypes. Driver mutations had equivalent prognostic significance, whether clonal or subclonal, and leukemia-free survival deteriorated steadily as numbers of driver mutations increased. Thus, analysis of oncogenic mutations in large, well-characterized cohorts of patients illustrates the interconnections between the cancer genome and disease biology, with considerable potential for clinical application. (Blood. 2013;122(22):3616-3627) Continuing Medical
Background Myelodysplastic syndromes are a diverse and common group of chronic hematologic cancers. The identification of new genetic lesions could facilitate new diagnostic and therapeutic strategies. Methods We used massively parallel sequencing technology to identify somatically acquired point mutations across all protein-coding exons in the genome in 9 patients with low-grade myelodysplasia. Targeted resequencing of the gene encoding RNA splicing factor 3B, subunit 1 (SF3B1), was also performed in a cohort of 2087 patients with myeloid or other cancers. Results We identified 64 point mutations in the 9 patients. Recurrent somatically acquired mutations were identified in SF3B1. Follow-up revealed SF3B1 mutations in 72 of 354 patients (20%) with myelodysplastic syndromes, with particularly high frequency among patients whose disease was characterized by ring sideroblasts (53 of 82 [65%]). The gene was also mutated in 1 to 5% of patients with a variety of other tumor types. The observed mutations were less deleterious than was expected on the basis of chance, suggesting that the mutated protein retains structural integrity with altered function. SF3B1 mutations were associated with down-regulation of key gene networks, including core mitochondrial pathways. Clinically, patients with SF3B1 mutations had fewer cytopenias and longer event-free survival than patients without SF3B1 mutations. Conclusions Mutations in SF3B1 implicate abnormalities of messenger RNA splicing in the pathogenesis of myelodysplastic syndromes. (Funded by the Wellcome Trust and others.)
WPSS is a dynamic prognostic scoring system that provides an accurate prediction of survival and risk of leukemic evolution in MDS patients at any time during the course of their disease. This time-dependent system seems particularly useful in lower risk patients and may be used for implementing risk-adapted treatment strategies.
Background Several small studies on patients with COVID-19 and haematological malignancies are available showing a high mortality in this population. The Italian Hematology Alliance on COVID-19 aimed to collect data from adult patients with haematological malignancies who required hospitalisation for COVID-19. Methods This multicentre, retrospective, cohort study included adult patients (aged ≥18 years) with diagnosis of a WHO-defined haematological malignancy admitted to 66 Italian hospitals between Feb 25 and May 18, 2020, with laboratory-confirmed and symptomatic COVID-19. Data cutoff for this analysis was June 22, 2020. The primary outcome was mortality and evaluation of potential predictive parameters of mortality. We calculated standardised mortality ratios between observed death in the study cohort and expected death by applying stratum-specific mortality rates of the Italian population with COVID-19 and an Italian cohort of 31 993 patients with haematological malignancies without COVID-19 (data up to March 1, 2019). Multivariable Cox proportional hazards model was used to identify factors associated with overall survival. This study is registered with ClinicalTrials.gov, NCT04352556, and the prospective part of the study is ongoing. Findings We enrolled 536 patients with a median follow-up of 20 days (IQR 10-34) at data cutoff, 85 (16%) of whom were managed as outpatients. 440 (98%) of 451 hospitalised patients completed their hospital course (were either discharged alive or died). 198 (37%) of 536 patients died. When compared with the general Italian population with COVID-19, the standardised mortality ratio was 2•04 (95% CI 1•77-2•34) in our whole study cohort and 3•72 (2•86-4•64) in individuals younger than 70 years. When compared with the non-COVID-19 cohort with haematological malignancies, the standardised mortality ratio was 41•3 (38•1-44•9). Older age (hazard ratio 1•03, 95% CI 1•01-1•05); progressive disease status (2•10, 1•41-3•12); diagnosis of acute myeloid leukaemia (3•49, 1•56-7•81), indolent non-Hodgin lymphoma (2•19, 1•07-4•48), aggressive non-Hodgkin lymphoma (2•56, 1•34-4•89), or plasma cell neoplasms (2•48, 1•31-4•69), and severe or critical COVID-19 (4•08, 2•73-6•09) were associated with worse overall survival. Interpretation This study adds to the evidence that patients with haematological malignancies have worse outcomes than both the general population with COVID-19 and patients with haematological malignancies without COVID-19. The high mortality among patients with haematological malignancies hospitalised with COVID-19 highlights the need for aggressive infection prevention strategies, at least until effective vaccination or treatment strategies are available. Funding Associazione italiana contro le leucemie, linfomi e mieloma-Varese Onlus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.