Chromosomal translocations encode oncogenic fusion proteins that have been proven to be causally involved in tumorigenesis. Our understanding of whether such genomic alterations also affect non-coding RNAs is limited, and their impact on circular RNAs (circRNAs) has not been explored. Here, we show that well-established cancer-associated chromosomal translocations give rise to fusion circRNAs (f-circRNA) that are produced from transcribed exons of distinct genes affected by the translocations. F-circRNAs contribute to cellular transformation, promote cell viability and resistance upon therapy, and have tumor-promoting properties in in vivo models. Our work expands the current knowledge regarding molecular mechanisms involved in cancer onset and progression, with potential diagnostic and therapeutic implications.
Cell 159, 402-414; October 9, 2014) In the above article, we inadvertently omitted the following acknowledgment:The results published here are, in part, based upon data generated by the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative managed by the NCI. The data used for this analysis (phs000218.v15.p5.c1) are available at http:// www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000218.v15.p5. Information about TARGET can be found at
Traditionally viewed as poorly plastic, neutrophils are now recognized as functionally diverse. However, the extent and determinants of neutrophil heterogeneity in humans remain unclear. We performed a comprehensive immunophenotypic and transcriptome analysis, at bulk and single-cell level, of neutrophils from healthy donors and patients undergoing stress myelopoiesis upon exposure to growth factors, transplantation of hematopoietic stem cells (HSC-T), development of pancreatic cancer, and viral infection. We uncover an extreme diversity of human neutrophils
in vivo
, reflecting the rates of cell mobilization, differentiation, and exposure to environmental signals. Integrated control of developmental and inducible transcriptional programs linked flexible granulopoietic outputs with elicitation of context-dependent functional responses. In this context, we detected an acute interferon (IFN) response in the blood of HSC-T patients that was mirrored by marked upregulation of IFN-stimulated genes in neutrophils but not in monocytes. Systematic characterization of human neutrophil plasticity may uncover clinically relevant biomarkers and support the development of diagnostic and therapeutic tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.